direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4⋊C4×F5, C20⋊C42, Dic5⋊C42, C4⋊F5⋊3C4, C4⋊2(C4×F5), (C4×F5)⋊5C4, C2.4(D4×F5), C2.2(Q8×F5), D5.3(C4×D4), (C2×F5).9D4, (C2×F5).3Q8, D5.2(C4×Q8), C10.4(C4×Q8), C4⋊Dic5⋊10C4, C10.11(C4×D4), D10.61(C2×D4), C10.D4⋊3C4, D10.25(C2×Q8), C10.10(C2×C42), D10.45(C4○D4), D10.30(C22×C4), D10.3Q8.8C2, C22.39(C22×F5), D5.3(C42⋊C2), (C22×F5).23C22, (C22×D5).271C23, C5⋊2(C4×C4⋊C4), (C5×C4⋊C4)⋊5C4, C2.12(C2×C4×F5), D5.1(C2×C4⋊C4), (C2×C4⋊F5).3C2, (C2×C4×F5).10C2, (D5×C4⋊C4).15C2, (C2×F5).2(C2×C4), (C2×C4).63(C2×F5), (C2×C20).43(C2×C4), (C4×D5).17(C2×C4), (C2×C4×D5).291C22, (C2×C10).48(C22×C4), (C2×Dic5).63(C2×C4), SmallGroup(320,1048)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4⋊C4×F5
G = < a,b,c,d | a4=b4=c5=d4=1, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
Subgroups: 666 in 194 conjugacy classes, 84 normal (34 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, C23, D5, C10, C42, C4⋊C4, C4⋊C4, C22×C4, Dic5, Dic5, C20, C20, F5, F5, D10, C2×C10, C2.C42, C2×C42, C2×C4⋊C4, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×F5, C2×F5, C22×D5, C4×C4⋊C4, C10.D4, C4⋊Dic5, C5×C4⋊C4, C4×F5, C4×F5, C4⋊F5, C2×C4×D5, C2×C4×D5, C22×F5, C22×F5, D10.3Q8, D5×C4⋊C4, C2×C4×F5, C2×C4×F5, C2×C4⋊F5, C4⋊C4×F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, F5, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C2×F5, C4×C4⋊C4, C4×F5, C22×F5, C2×C4×F5, D4×F5, Q8×F5, C4⋊C4×F5
(1 56 6 51)(2 57 7 52)(3 58 8 53)(4 59 9 54)(5 60 10 55)(11 46 16 41)(12 47 17 42)(13 48 18 43)(14 49 19 44)(15 50 20 45)(21 76 26 71)(22 77 27 72)(23 78 28 73)(24 79 29 74)(25 80 30 75)(31 66 36 61)(32 67 37 62)(33 68 38 63)(34 69 39 64)(35 70 40 65)
(1 31 11 21)(2 32 12 22)(3 33 13 23)(4 34 14 24)(5 35 15 25)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 76 51 66)(42 77 52 67)(43 78 53 68)(44 79 54 69)(45 80 55 70)(46 71 56 61)(47 72 57 62)(48 73 58 63)(49 74 59 64)(50 75 60 65)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 56 6 51)(2 58 10 54)(3 60 9 52)(4 57 8 55)(5 59 7 53)(11 46 16 41)(12 48 20 44)(13 50 19 42)(14 47 18 45)(15 49 17 43)(21 71 26 76)(22 73 30 79)(23 75 29 77)(24 72 28 80)(25 74 27 78)(31 61 36 66)(32 63 40 69)(33 65 39 67)(34 62 38 70)(35 64 37 68)
G:=sub<Sym(80)| (1,56,6,51)(2,57,7,52)(3,58,8,53)(4,59,9,54)(5,60,10,55)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,76,26,71)(22,77,27,72)(23,78,28,73)(24,79,29,74)(25,80,30,75)(31,66,36,61)(32,67,37,62)(33,68,38,63)(34,69,39,64)(35,70,40,65), (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,76,51,66)(42,77,52,67)(43,78,53,68)(44,79,54,69)(45,80,55,70)(46,71,56,61)(47,72,57,62)(48,73,58,63)(49,74,59,64)(50,75,60,65), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,56,6,51)(2,58,10,54)(3,60,9,52)(4,57,8,55)(5,59,7,53)(11,46,16,41)(12,48,20,44)(13,50,19,42)(14,47,18,45)(15,49,17,43)(21,71,26,76)(22,73,30,79)(23,75,29,77)(24,72,28,80)(25,74,27,78)(31,61,36,66)(32,63,40,69)(33,65,39,67)(34,62,38,70)(35,64,37,68)>;
G:=Group( (1,56,6,51)(2,57,7,52)(3,58,8,53)(4,59,9,54)(5,60,10,55)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,76,26,71)(22,77,27,72)(23,78,28,73)(24,79,29,74)(25,80,30,75)(31,66,36,61)(32,67,37,62)(33,68,38,63)(34,69,39,64)(35,70,40,65), (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,76,51,66)(42,77,52,67)(43,78,53,68)(44,79,54,69)(45,80,55,70)(46,71,56,61)(47,72,57,62)(48,73,58,63)(49,74,59,64)(50,75,60,65), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,56,6,51)(2,58,10,54)(3,60,9,52)(4,57,8,55)(5,59,7,53)(11,46,16,41)(12,48,20,44)(13,50,19,42)(14,47,18,45)(15,49,17,43)(21,71,26,76)(22,73,30,79)(23,75,29,77)(24,72,28,80)(25,74,27,78)(31,61,36,66)(32,63,40,69)(33,65,39,67)(34,62,38,70)(35,64,37,68) );
G=PermutationGroup([[(1,56,6,51),(2,57,7,52),(3,58,8,53),(4,59,9,54),(5,60,10,55),(11,46,16,41),(12,47,17,42),(13,48,18,43),(14,49,19,44),(15,50,20,45),(21,76,26,71),(22,77,27,72),(23,78,28,73),(24,79,29,74),(25,80,30,75),(31,66,36,61),(32,67,37,62),(33,68,38,63),(34,69,39,64),(35,70,40,65)], [(1,31,11,21),(2,32,12,22),(3,33,13,23),(4,34,14,24),(5,35,15,25),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,76,51,66),(42,77,52,67),(43,78,53,68),(44,79,54,69),(45,80,55,70),(46,71,56,61),(47,72,57,62),(48,73,58,63),(49,74,59,64),(50,75,60,65)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,56,6,51),(2,58,10,54),(3,60,9,52),(4,57,8,55),(5,59,7,53),(11,46,16,41),(12,48,20,44),(13,50,19,42),(14,47,18,45),(15,49,17,43),(21,71,26,76),(22,73,30,79),(23,75,29,77),(24,72,28,80),(25,74,27,78),(31,61,36,66),(32,63,40,69),(33,65,39,67),(34,62,38,70),(35,64,37,68)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4F | 4G | ··· | 4N | 4O | ··· | 4AF | 5 | 10A | 10B | 10C | 20A | ··· | 20F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 2 | ··· | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | - | + | + | + | - | |||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C4 | D4 | Q8 | C4○D4 | F5 | C2×F5 | C4×F5 | D4×F5 | Q8×F5 |
kernel | C4⋊C4×F5 | D10.3Q8 | D5×C4⋊C4 | C2×C4×F5 | C2×C4⋊F5 | C10.D4 | C4⋊Dic5 | C5×C4⋊C4 | C4×F5 | C4⋊F5 | C2×F5 | C2×F5 | D10 | C4⋊C4 | C2×C4 | C4 | C2 | C2 |
# reps | 1 | 2 | 1 | 3 | 1 | 4 | 2 | 2 | 8 | 8 | 2 | 2 | 4 | 1 | 3 | 4 | 1 | 1 |
Matrix representation of C4⋊C4×F5 ►in GL8(𝔽41)
32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 40 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
G:=sub<GL(8,GF(41))| [32,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,40,40,40],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0] >;
C4⋊C4×F5 in GAP, Magma, Sage, TeX
C_4\rtimes C_4\times F_5
% in TeX
G:=Group("C4:C4xF5");
// GroupNames label
G:=SmallGroup(320,1048);
// by ID
G=gap.SmallGroup(320,1048);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,387,100,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^5=d^4=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations