Extensions 1→N→G→Q→1 with N=C8.C4 and Q=D5

Direct product G=N×Q with N=C8.C4 and Q=D5
dρLabelID
D5×C8.C4804D5xC8.C4320,519

Semidirect products G=N:Q with N=C8.C4 and Q=D5
extensionφ:Q→Out NdρLabelID
C8.C41D5 = D40.6C4φ: D5/C5C2 ⊆ Out C8.C4804+C8.C4:1D5320,53
C8.C42D5 = D40.5C4φ: D5/C5C2 ⊆ Out C8.C41604C8.C4:2D5320,55
C8.C43D5 = M4(2).25D10φ: D5/C5C2 ⊆ Out C8.C4804C8.C4:3D5320,520
C8.C44D5 = D4016C4φ: D5/C5C2 ⊆ Out C8.C4804C8.C4:4D5320,521
C8.C45D5 = C8.20D20φ: D5/C5C2 ⊆ Out C8.C41604-C8.C4:5D5320,523
C8.C46D5 = C8.21D20φ: D5/C5C2 ⊆ Out C8.C4804+C8.C4:6D5320,524
C8.C47D5 = C8.24D20φ: D5/C5C2 ⊆ Out C8.C4804C8.C4:7D5320,525
C8.C48D5 = D4013C4φ: trivial image804C8.C4:8D5320,522

Non-split extensions G=N.Q with N=C8.C4 and Q=D5
extensionφ:Q→Out NdρLabelID
C8.C4.1D5 = C40.7Q8φ: D5/C5C2 ⊆ Out C8.C41604C8.C4.1D5320,51
C8.C4.2D5 = C40.6Q8φ: D5/C5C2 ⊆ Out C8.C4804C8.C4.2D5320,52
C8.C4.3D5 = C40.8D4φ: D5/C5C2 ⊆ Out C8.C41604-C8.C4.3D5320,54

׿
×
𝔽