metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: M4(2).25D10, C8.10(C4×D5), C40.69(C2×C4), C8.C4⋊3D5, C8⋊D5.3C4, (C2×C8).68D10, C4.211(D4×D5), C40.6C4⋊7C2, (C4×D5).106D4, C20.370(C2×D4), C22.4(Q8×D5), (C2×Dic5).4Q8, D10.18(C4⋊C4), (C22×D5).3Q8, C20.53D4⋊8C2, (C2×C40).40C22, (D5×M4(2)).9C2, C5⋊2(M4(2).C4), Dic5.20(C4⋊C4), C20.112(C22×C4), (C2×C20).309C23, C4.Dic5.13C22, (C5×M4(2)).19C22, C4.83(C2×C4×D5), C2.18(D5×C4⋊C4), C10.40(C2×C4⋊C4), C5⋊2C8.3(C2×C4), (C4×D5).8(C2×C4), (C2×C10).2(C2×Q8), (C5×C8.C4)⋊3C2, (C2×C8⋊D5).1C2, (C2×C4×D5).47C22, (C2×C5⋊2C8).77C22, (C2×C4).412(C22×D5), SmallGroup(320,520)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for M4(2).25D10
G = < a,b,c,d | a8=b2=1, c10=a2b, d2=a6b, bab=a5, cac-1=a-1b, dad-1=a3b, bc=cb, bd=db, dcd-1=a4c9 >
Subgroups: 318 in 102 conjugacy classes, 51 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, C10, C10, C2×C8, C2×C8, M4(2), M4(2), C22×C4, Dic5, C20, D10, D10, C2×C10, C8.C4, C8.C4, C2×M4(2), C5⋊2C8, C5⋊2C8, C40, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, M4(2).C4, C8×D5, C8⋊D5, C8⋊D5, C2×C5⋊2C8, C4.Dic5, C2×C40, C5×M4(2), C2×C4×D5, C40.6C4, C20.53D4, C5×C8.C4, C2×C8⋊D5, D5×M4(2), M4(2).25D10
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, C22×C4, C2×D4, C2×Q8, D10, C2×C4⋊C4, C4×D5, C22×D5, M4(2).C4, C2×C4×D5, D4×D5, Q8×D5, D5×C4⋊C4, M4(2).25D10
(1 42 11 72 21 62 31 52)(2 73 12 63 22 53 32 43)(3 64 13 54 23 44 33 74)(4 55 14 45 24 75 34 65)(5 46 15 76 25 66 35 56)(6 77 16 67 26 57 36 47)(7 68 17 58 27 48 37 78)(8 59 18 49 28 79 38 69)(9 50 19 80 29 70 39 60)(10 41 20 71 30 61 40 51)
(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 10 31 40 21 30 11 20)(2 39 32 29 22 19 12 9)(3 28 33 18 23 8 13 38)(4 17 34 7 24 37 14 27)(5 6 35 36 25 26 15 16)(41 42 71 72 61 62 51 52)(43 60 73 50 63 80 53 70)(44 49 74 79 64 69 54 59)(45 78 75 68 65 58 55 48)(46 67 76 57 66 47 56 77)
G:=sub<Sym(80)| (1,42,11,72,21,62,31,52)(2,73,12,63,22,53,32,43)(3,64,13,54,23,44,33,74)(4,55,14,45,24,75,34,65)(5,46,15,76,25,66,35,56)(6,77,16,67,26,57,36,47)(7,68,17,58,27,48,37,78)(8,59,18,49,28,79,38,69)(9,50,19,80,29,70,39,60)(10,41,20,71,30,61,40,51), (41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,10,31,40,21,30,11,20)(2,39,32,29,22,19,12,9)(3,28,33,18,23,8,13,38)(4,17,34,7,24,37,14,27)(5,6,35,36,25,26,15,16)(41,42,71,72,61,62,51,52)(43,60,73,50,63,80,53,70)(44,49,74,79,64,69,54,59)(45,78,75,68,65,58,55,48)(46,67,76,57,66,47,56,77)>;
G:=Group( (1,42,11,72,21,62,31,52)(2,73,12,63,22,53,32,43)(3,64,13,54,23,44,33,74)(4,55,14,45,24,75,34,65)(5,46,15,76,25,66,35,56)(6,77,16,67,26,57,36,47)(7,68,17,58,27,48,37,78)(8,59,18,49,28,79,38,69)(9,50,19,80,29,70,39,60)(10,41,20,71,30,61,40,51), (41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,10,31,40,21,30,11,20)(2,39,32,29,22,19,12,9)(3,28,33,18,23,8,13,38)(4,17,34,7,24,37,14,27)(5,6,35,36,25,26,15,16)(41,42,71,72,61,62,51,52)(43,60,73,50,63,80,53,70)(44,49,74,79,64,69,54,59)(45,78,75,68,65,58,55,48)(46,67,76,57,66,47,56,77) );
G=PermutationGroup([[(1,42,11,72,21,62,31,52),(2,73,12,63,22,53,32,43),(3,64,13,54,23,44,33,74),(4,55,14,45,24,75,34,65),(5,46,15,76,25,66,35,56),(6,77,16,67,26,57,36,47),(7,68,17,58,27,48,37,78),(8,59,18,49,28,79,38,69),(9,50,19,80,29,70,39,60),(10,41,20,71,30,61,40,51)], [(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,10,31,40,21,30,11,20),(2,39,32,29,22,19,12,9),(3,28,33,18,23,8,13,38),(4,17,34,7,24,37,14,27),(5,6,35,36,25,26,15,16),(41,42,71,72,61,62,51,52),(43,60,73,50,63,80,53,70),(44,49,74,79,64,69,54,59),(45,78,75,68,65,58,55,48),(46,67,76,57,66,47,56,77)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 8A | ··· | 8F | 8G | ··· | 8L | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 20E | 20F | 40A | ··· | 40H | 40I | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | ··· | 8 | 8 | ··· | 8 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 10 | 10 | 1 | 1 | 2 | 10 | 10 | 2 | 2 | 4 | ··· | 4 | 20 | ··· | 20 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | - | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | Q8 | Q8 | D5 | D10 | D10 | C4×D5 | M4(2).C4 | D4×D5 | Q8×D5 | M4(2).25D10 |
kernel | M4(2).25D10 | C40.6C4 | C20.53D4 | C5×C8.C4 | C2×C8⋊D5 | D5×M4(2) | C8⋊D5 | C4×D5 | C2×Dic5 | C22×D5 | C8.C4 | C2×C8 | M4(2) | C8 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 2 | 8 | 2 | 1 | 1 | 2 | 2 | 4 | 8 | 2 | 2 | 2 | 8 |
Matrix representation of M4(2).25D10 ►in GL6(𝔽41)
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 15 |
0 | 0 | 9 | 0 | 12 | 0 |
0 | 0 | 0 | 9 | 0 | 40 |
0 | 0 | 40 | 0 | 17 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
6 | 6 | 0 | 0 | 0 | 0 |
35 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 0 | 34 | 0 |
0 | 0 | 0 | 32 | 0 | 33 |
0 | 0 | 40 | 0 | 17 | 0 |
0 | 0 | 0 | 1 | 0 | 9 |
6 | 6 | 0 | 0 | 0 | 0 |
1 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 0 | 11 | 0 |
0 | 0 | 0 | 32 | 0 | 10 |
0 | 0 | 40 | 0 | 17 | 0 |
0 | 0 | 0 | 1 | 0 | 9 |
G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,9,0,40,0,0,30,0,9,0,0,0,0,12,0,17,0,0,15,0,40,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[6,35,0,0,0,0,6,1,0,0,0,0,0,0,24,0,40,0,0,0,0,32,0,1,0,0,34,0,17,0,0,0,0,33,0,9],[6,1,0,0,0,0,6,35,0,0,0,0,0,0,24,0,40,0,0,0,0,32,0,1,0,0,11,0,17,0,0,0,0,10,0,9] >;
M4(2).25D10 in GAP, Magma, Sage, TeX
M_4(2)._{25}D_{10}
% in TeX
G:=Group("M4(2).25D10");
// GroupNames label
G:=SmallGroup(320,520);
// by ID
G=gap.SmallGroup(320,520);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,120,219,58,136,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=1,c^10=a^2*b,d^2=a^6*b,b*a*b=a^5,c*a*c^-1=a^-1*b,d*a*d^-1=a^3*b,b*c=c*b,b*d=d*b,d*c*d^-1=a^4*c^9>;
// generators/relations