Extensions 1→N→G→Q→1 with N=D48D10 and Q=C2

Direct product G=N×Q with N=D48D10 and Q=C2
dρLabelID
C2×D48D1080C2xD4:8D10320,1619

Semidirect products G=N:Q with N=D48D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D48D101C2 = D44D20φ: C2/C1C2 ⊆ Out D48D10404+D4:8D10:1C2320,449
D48D102C2 = D2018D4φ: C2/C1C2 ⊆ Out D48D10408+D4:8D10:2C2320,825
D48D103C2 = D4.11D20φ: C2/C1C2 ⊆ Out D48D10804D4:8D10:3C2320,1423
D48D104C2 = D4.12D20φ: C2/C1C2 ⊆ Out D48D10804+D4:8D10:4C2320,1424
D48D105C2 = D815D10φ: C2/C1C2 ⊆ Out D48D10804+D4:8D10:5C2320,1441
D48D106C2 = D811D10φ: C2/C1C2 ⊆ Out D48D10804D4:8D10:6C2320,1442
D48D107C2 = D85D10φ: C2/C1C2 ⊆ Out D48D10808+D4:8D10:7C2320,1446
D48D108C2 = C40.C23φ: C2/C1C2 ⊆ Out D48D10808+D4:8D10:8C2320,1450
D48D109C2 = D20.32C23φ: C2/C1C2 ⊆ Out D48D10808+D4:8D10:9C2320,1507
D48D1010C2 = D20.34C23φ: C2/C1C2 ⊆ Out D48D10808+D4:8D10:10C2320,1509
D48D1011C2 = D5×2+ 1+4φ: C2/C1C2 ⊆ Out D48D10408+D4:8D10:11C2320,1622
D48D1012C2 = D20.39C23φ: C2/C1C2 ⊆ Out D48D10808+D4:8D10:12C2320,1625
D48D1013C2 = C10.C25φ: trivial image804D4:8D10:13C2320,1621

Non-split extensions G=N.Q with N=D48D10 and Q=C2
extensionφ:Q→Out NdρLabelID
D48D10.1C2 = M4(2)⋊D10φ: C2/C1C2 ⊆ Out D48D10804D4:8D10.1C2320,452
D48D10.2C2 = D20.39D4φ: C2/C1C2 ⊆ Out D48D10808+D4:8D10.2C2320,829

׿
×
𝔽