Extensions 1→N→G→Q→1 with N=C5×SD16 and Q=C4

Direct product G=N×Q with N=C5×SD16 and Q=C4
dρLabelID
SD16×C20160SD16xC20320,939

Semidirect products G=N:Q with N=C5×SD16 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×SD16)⋊1C4 = SD16⋊F5φ: C4/C1C4 ⊆ Out C5×SD16408(C5xSD16):1C4320,1073
(C5×SD16)⋊2C4 = SD162F5φ: C4/C1C4 ⊆ Out C5×SD16808(C5xSD16):2C4320,1075
(C5×SD16)⋊3C4 = SD16×F5φ: C4/C1C4 ⊆ Out C5×SD16408(C5xSD16):3C4320,1072
(C5×SD16)⋊4C4 = SD163F5φ: C4/C1C4 ⊆ Out C5×SD16808(C5xSD16):4C4320,1074
(C5×SD16)⋊5C4 = SD16⋊Dic5φ: C4/C2C2 ⊆ Out C5×SD16160(C5xSD16):5C4320,791
(C5×SD16)⋊6C4 = D84Dic5φ: C4/C2C2 ⊆ Out C5×SD16804(C5xSD16):6C4320,824
(C5×SD16)⋊7C4 = SD16×Dic5φ: C4/C2C2 ⊆ Out C5×SD16160(C5xSD16):7C4320,788
(C5×SD16)⋊8C4 = D85Dic5φ: C4/C2C2 ⊆ Out C5×SD16804(C5xSD16):8C4320,823
(C5×SD16)⋊9C4 = C5×SD16⋊C4φ: C4/C2C2 ⊆ Out C5×SD16160(C5xSD16):9C4320,941
(C5×SD16)⋊10C4 = C5×C8.26D4φ: C4/C2C2 ⊆ Out C5×SD16804(C5xSD16):10C4320,945
(C5×SD16)⋊11C4 = C5×C8○D8φ: trivial image802(C5xSD16):11C4320,944


׿
×
𝔽