Copied to
clipboard

G = SD16:2F5order 320 = 26·5

2nd semidirect product of SD16 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: SD16:2F5, C5:C8.2D4, D4:D5:4C4, C8.7(C2xF5), C40:C2:2C4, C8:F5:5C2, C5:Q16:2C4, D4.F5:4C2, Q8.F5:2C2, D4.6(C2xF5), C2.22(D4xF5), Q8.2(C2xF5), C5:2(C8.26D4), C40.15(C2xC4), D4:F5:4C2, Q8:2F5:2C2, (C5xSD16):2C4, D20.4(C2xC4), C10.21(C4xD4), D10.Q8:5C2, C4.8(C22xF5), C20.8(C22xC4), D5:C8.4C22, (C4xF5).4C22, D10.4(C4oD4), C4.F5.4C22, Dic10.4(C2xC4), Dic5.75(C2xD4), (C4xD5).30C23, (C8xD5).26C22, SD16:3D5.1C2, D4:2D5.7C22, Q8:2D5.5C22, (C5xD4).6(C2xC4), (C5xQ8).2(C2xC4), C5:2C8.10(C2xC4), SmallGroup(320,1075)

Series: Derived Chief Lower central Upper central

C1C20 — SD16:2F5
C1C5C10Dic5C4xD5D5:C8D4.F5 — SD16:2F5
C5C10C20 — SD16:2F5
C1C2C4SD16

Generators and relations for SD16:2F5
 G = < a,b,c,d | a8=b2=c5=d4=1, bab=a3, ac=ca, dad-1=a5, bc=cb, dbd-1=a2b, dcd-1=c3 >

Subgroups: 402 in 104 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2xC4, D4, D4, Q8, Q8, D5, C10, C10, C42, C2xC8, M4(2), D8, SD16, SD16, Q16, C4oD4, Dic5, Dic5, C20, C20, F5, D10, D10, C2xC10, C8:C4, C4wrC2, C8.C4, C8oD4, C4oD8, C5:2C8, C40, C5:C8, C5:C8, Dic10, C4xD5, C4xD5, D20, D20, C2xDic5, C5:D4, C5xD4, C5xQ8, C2xF5, C8.26D4, C8xD5, C40:C2, D4:D5, C5:Q16, C5xSD16, D5:C8, D5:C8, C4.F5, C4.F5, C4xF5, C2xC5:C8, C22.F5, D4:2D5, Q8:2D5, C8:F5, D10.Q8, D4:F5, Q8:2F5, SD16:3D5, D4.F5, Q8.F5, SD16:2F5
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, F5, C4xD4, C2xF5, C8.26D4, C22xF5, D4xF5, SD16:2F5

Character table of SD16:2F5

 class 12A2B2C2D4A4B4C4D4E4F4G58A8B8C8D8E8F8G8H8I8J10A10B20A20B40A40B
 size 114102024552020204410101010202020202041681688
ρ111111111111111111111111111111    trivial
ρ21111-11-1111111-1-1-1-1-1-111-1-1111-1-1-1    linear of order 2
ρ311-11-11-11111-11111111-1-1-1-11-11-111    linear of order 2
ρ411-111111111-11-1-1-1-1-1-1-1-1111-111-1-1    linear of order 2
ρ511-1111111-1-1-11-11111-111-1-11-111-1-1    linear of order 2
ρ611-11-11-111-1-1-111-1-1-1-1111111-11-111    linear of order 2
ρ71111-11-111-1-111-11111-1-1-111111-1-1-1    linear of order 2
ρ8111111111-1-1111-1-1-1-11-1-1-1-1111111    linear of order 2
ρ9111-1-111-1-1i-i-111-iii-i-1-ii-ii111111    linear of order 4
ρ10111-111-1-1-1i-i-11-1i-i-ii1-iii-i111-1-1-1    linear of order 4
ρ11111-1-111-1-1-ii-111i-i-ii-1i-ii-i111111    linear of order 4
ρ12111-111-1-1-1-ii-11-1-iii-i1i-i-ii111-1-1-1    linear of order 4
ρ1311-1-111-1-1-1-ii111i-i-ii-1-ii-ii1-11-111    linear of order 4
ρ1411-1-1-111-1-1-ii11-1-iii-i1-iii-i1-111-1-1    linear of order 4
ρ1511-1-111-1-1-1i-i111-iii-i-1i-ii-i1-11-111    linear of order 4
ρ1611-1-1-111-1-1i-i11-1i-i-ii1i-i-ii1-111-1-1    linear of order 4
ρ17220-20-202200020-22-220000020-2000    orthogonal lifted from D4
ρ18220-20-2022000202-22-20000020-2000    orthogonal lifted from D4
ρ1922020-20-2-200020-2i-2i2i2i0000020-2000    complex lifted from C4oD4
ρ2022020-20-2-2000202i2i-2i-2i0000020-2000    complex lifted from C4oD4
ρ2144-4004400000-1-4000000000-11-1-111    orthogonal lifted from C2xF5
ρ2244-4004-400000-14000000000-11-11-1-1    orthogonal lifted from C2xF5
ρ23444004400000-14000000000-1-1-1-1-1-1    orthogonal lifted from F5
ρ24444004-400000-1-4000000000-1-1-1111    orthogonal lifted from C2xF5
ρ254-400000-4i4i00040000000000-400000    complex lifted from C8.26D4
ρ264-4000004i-4i00040000000000-400000    complex lifted from C8.26D4
ρ2788000-8000000-20000000000-202000    orthogonal lifted from D4xF5
ρ288-80000000000-200000000002000--10-10    complex faithful
ρ298-80000000000-200000000002000-10--10    complex faithful

Smallest permutation representation of SD16:2F5
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 59)(2 62)(3 57)(4 60)(5 63)(6 58)(7 61)(8 64)(9 28)(10 31)(11 26)(12 29)(13 32)(14 27)(15 30)(16 25)(17 46)(18 41)(19 44)(20 47)(21 42)(22 45)(23 48)(24 43)(33 75)(34 78)(35 73)(36 76)(37 79)(38 74)(39 77)(40 80)(49 69)(50 72)(51 67)(52 70)(53 65)(54 68)(55 71)(56 66)
(1 12 43 79 71)(2 13 44 80 72)(3 14 45 73 65)(4 15 46 74 66)(5 16 47 75 67)(6 9 48 76 68)(7 10 41 77 69)(8 11 42 78 70)(17 38 56 60 30)(18 39 49 61 31)(19 40 50 62 32)(20 33 51 63 25)(21 34 52 64 26)(22 35 53 57 27)(23 36 54 58 28)(24 37 55 59 29)
(2 6)(4 8)(9 44 68 80)(10 41 69 77)(11 46 70 74)(12 43 71 79)(13 48 72 76)(14 45 65 73)(15 42 66 78)(16 47 67 75)(17 54 34 32)(18 51 35 29)(19 56 36 26)(20 53 37 31)(21 50 38 28)(22 55 39 25)(23 52 40 30)(24 49 33 27)(57 59 61 63)(58 64 62 60)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,28)(10,31)(11,26)(12,29)(13,32)(14,27)(15,30)(16,25)(17,46)(18,41)(19,44)(20,47)(21,42)(22,45)(23,48)(24,43)(33,75)(34,78)(35,73)(36,76)(37,79)(38,74)(39,77)(40,80)(49,69)(50,72)(51,67)(52,70)(53,65)(54,68)(55,71)(56,66), (1,12,43,79,71)(2,13,44,80,72)(3,14,45,73,65)(4,15,46,74,66)(5,16,47,75,67)(6,9,48,76,68)(7,10,41,77,69)(8,11,42,78,70)(17,38,56,60,30)(18,39,49,61,31)(19,40,50,62,32)(20,33,51,63,25)(21,34,52,64,26)(22,35,53,57,27)(23,36,54,58,28)(24,37,55,59,29), (2,6)(4,8)(9,44,68,80)(10,41,69,77)(11,46,70,74)(12,43,71,79)(13,48,72,76)(14,45,65,73)(15,42,66,78)(16,47,67,75)(17,54,34,32)(18,51,35,29)(19,56,36,26)(20,53,37,31)(21,50,38,28)(22,55,39,25)(23,52,40,30)(24,49,33,27)(57,59,61,63)(58,64,62,60)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,62)(3,57)(4,60)(5,63)(6,58)(7,61)(8,64)(9,28)(10,31)(11,26)(12,29)(13,32)(14,27)(15,30)(16,25)(17,46)(18,41)(19,44)(20,47)(21,42)(22,45)(23,48)(24,43)(33,75)(34,78)(35,73)(36,76)(37,79)(38,74)(39,77)(40,80)(49,69)(50,72)(51,67)(52,70)(53,65)(54,68)(55,71)(56,66), (1,12,43,79,71)(2,13,44,80,72)(3,14,45,73,65)(4,15,46,74,66)(5,16,47,75,67)(6,9,48,76,68)(7,10,41,77,69)(8,11,42,78,70)(17,38,56,60,30)(18,39,49,61,31)(19,40,50,62,32)(20,33,51,63,25)(21,34,52,64,26)(22,35,53,57,27)(23,36,54,58,28)(24,37,55,59,29), (2,6)(4,8)(9,44,68,80)(10,41,69,77)(11,46,70,74)(12,43,71,79)(13,48,72,76)(14,45,65,73)(15,42,66,78)(16,47,67,75)(17,54,34,32)(18,51,35,29)(19,56,36,26)(20,53,37,31)(21,50,38,28)(22,55,39,25)(23,52,40,30)(24,49,33,27)(57,59,61,63)(58,64,62,60) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,59),(2,62),(3,57),(4,60),(5,63),(6,58),(7,61),(8,64),(9,28),(10,31),(11,26),(12,29),(13,32),(14,27),(15,30),(16,25),(17,46),(18,41),(19,44),(20,47),(21,42),(22,45),(23,48),(24,43),(33,75),(34,78),(35,73),(36,76),(37,79),(38,74),(39,77),(40,80),(49,69),(50,72),(51,67),(52,70),(53,65),(54,68),(55,71),(56,66)], [(1,12,43,79,71),(2,13,44,80,72),(3,14,45,73,65),(4,15,46,74,66),(5,16,47,75,67),(6,9,48,76,68),(7,10,41,77,69),(8,11,42,78,70),(17,38,56,60,30),(18,39,49,61,31),(19,40,50,62,32),(20,33,51,63,25),(21,34,52,64,26),(22,35,53,57,27),(23,36,54,58,28),(24,37,55,59,29)], [(2,6),(4,8),(9,44,68,80),(10,41,69,77),(11,46,70,74),(12,43,71,79),(13,48,72,76),(14,45,65,73),(15,42,66,78),(16,47,67,75),(17,54,34,32),(18,51,35,29),(19,56,36,26),(20,53,37,31),(21,50,38,28),(22,55,39,25),(23,52,40,30),(24,49,33,27),(57,59,61,63),(58,64,62,60)]])

Matrix representation of SD16:2F5 in GL8(F41)

400000000
040000000
004000000
000400000
000020037
00003803220
00002106
000090039
,
10000000
01000000
00100000
00010000
000028050
000030161
0000320130
0000191230
,
000400000
100400000
010400000
001400000
00001000
00000100
00000010
00000001
,
00100000
10000000
00010000
01000000
00001000
000040900
0000260320
000010040

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,2,38,2,9,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,37,20,6,39],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,3,32,19,0,0,0,0,0,0,0,1,0,0,0,0,5,16,13,23,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,40,40,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,40,26,1,0,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,40] >;

SD16:2F5 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\rtimes_2F_5
% in TeX

G:=Group("SD16:2F5");
// GroupNames label

G:=SmallGroup(320,1075);
// by ID

G=gap.SmallGroup(320,1075);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,219,184,136,851,438,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^5=d^4=1,b*a*b=a^3,a*c=c*a,d*a*d^-1=a^5,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations

Export

Character table of SD16:2F5 in TeX

׿
x
:
Z
F
o
wr
Q
<