Extensions 1→N→G→Q→1 with N=C4xF5 and Q=C4

Direct product G=NxQ with N=C4xF5 and Q=C4
dρLabelID
C42xF580C4^2xF5320,1023

Semidirect products G=N:Q with N=C4xF5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4xF5):1C4 = C42:3F5φ: C4/C1C4 ⊆ Out C4xF5804(C4xF5):1C4320,201
(C4xF5):2C4 = C20.24C42φ: C4/C1C4 ⊆ Out C4xF5804(C4xF5):2C4320,233
(C4xF5):3C4 = C20.C42φ: C4/C2C2 ⊆ Out C4xF580(C4xF5):3C4320,213
(C4xF5):4C4 = M4(2):3F5φ: C4/C2C2 ⊆ Out C4xF5408(C4xF5):4C4320,238
(C4xF5):5C4 = C4:C4xF5φ: C4/C2C2 ⊆ Out C4xF580(C4xF5):5C4320,1048
(C4xF5):6C4 = C42:4F5φ: C4/C2C2 ⊆ Out C4xF580(C4xF5):6C4320,1024

Non-split extensions G=N.Q with N=C4xF5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4xF5).1C4 = C16:F5φ: C4/C1C4 ⊆ Out C4xF5804(C4xF5).1C4320,183
(C4xF5).2C4 = C16:4F5φ: C4/C1C4 ⊆ Out C4xF5804(C4xF5).2C4320,184
(C4xF5).3C4 = M4(2)xF5φ: C4/C2C2 ⊆ Out C4xF5408(C4xF5).3C4320,1064
(C4xF5).4C4 = C16:7F5φ: C4/C2C2 ⊆ Out C4xF5804(C4xF5).4C4320,182
(C4xF5).5C4 = C2xC8:F5φ: C4/C2C2 ⊆ Out C4xF580(C4xF5).5C4320,1055
(C4xF5).6C4 = C16xF5φ: trivial image804(C4xF5).6C4320,181
(C4xF5).7C4 = C2xC8xF5φ: trivial image80(C4xF5).7C4320,1054

׿
x
:
Z
F
o
wr
Q
<