Extensions 1→N→G→Q→1 with N=C4×F5 and Q=C4

Direct product G=N×Q with N=C4×F5 and Q=C4
dρLabelID
C42×F580C4^2xF5320,1023

Semidirect products G=N:Q with N=C4×F5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×F5)⋊1C4 = C423F5φ: C4/C1C4 ⊆ Out C4×F5804(C4xF5):1C4320,201
(C4×F5)⋊2C4 = C20.24C42φ: C4/C1C4 ⊆ Out C4×F5804(C4xF5):2C4320,233
(C4×F5)⋊3C4 = C20.C42φ: C4/C2C2 ⊆ Out C4×F580(C4xF5):3C4320,213
(C4×F5)⋊4C4 = M4(2)⋊3F5φ: C4/C2C2 ⊆ Out C4×F5408(C4xF5):4C4320,238
(C4×F5)⋊5C4 = C4⋊C4×F5φ: C4/C2C2 ⊆ Out C4×F580(C4xF5):5C4320,1048
(C4×F5)⋊6C4 = C424F5φ: C4/C2C2 ⊆ Out C4×F580(C4xF5):6C4320,1024

Non-split extensions G=N.Q with N=C4×F5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×F5).1C4 = C16⋊F5φ: C4/C1C4 ⊆ Out C4×F5804(C4xF5).1C4320,183
(C4×F5).2C4 = C164F5φ: C4/C1C4 ⊆ Out C4×F5804(C4xF5).2C4320,184
(C4×F5).3C4 = M4(2)×F5φ: C4/C2C2 ⊆ Out C4×F5408(C4xF5).3C4320,1064
(C4×F5).4C4 = C167F5φ: C4/C2C2 ⊆ Out C4×F5804(C4xF5).4C4320,182
(C4×F5).5C4 = C2×C8⋊F5φ: C4/C2C2 ⊆ Out C4×F580(C4xF5).5C4320,1055
(C4×F5).6C4 = C16×F5φ: trivial image804(C4xF5).6C4320,181
(C4×F5).7C4 = C2×C8×F5φ: trivial image80(C4xF5).7C4320,1054

׿
×
𝔽