Copied to
clipboard

G = C167F5order 320 = 26·5

3rd semidirect product of C16 and F5 acting via F5/D5=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C808C4, C167F5, D5.M5(2), C20.14C42, C5⋊C8.C8, C5⋊C165C4, (C2×F5).C8, C2.3(C8×F5), C10.2(C4×C8), D5⋊C8.5C4, C52C1616C4, C51(C165C4), (C4×F5).4C4, (C8×F5).2C2, C4.14(C4×F5), C8.38(C2×F5), C40.33(C2×C4), D5⋊C16.2C2, D10.5(C2×C8), (D5×C16).10C2, Dic5.8(C2×C8), (C8×D5).60C22, C52C8.33(C2×C4), (C4×D5).68(C2×C4), SmallGroup(320,182)

Series: Derived Chief Lower central Upper central

C1C10 — C167F5
C1C5C10C20C4×D5C8×D5C8×F5 — C167F5
C5C10 — C167F5
C1C8C16

Generators and relations for C167F5
 G = < a,b,c | a16=b5=c4=1, ab=ba, cac-1=a9, cbc-1=b3 >

5C2
5C2
5C4
5C22
10C4
10C4
5C8
5C2×C4
5C2×C4
5C8
5C2×C4
5C8
2F5
2F5
5C16
5C16
5C2×C8
5C2×C8
5C42
5C16
5C4×C8
5C2×C16
5C2×C16
5C165C4

Smallest permutation representation of C167F5
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 38 75 24 63)(2 39 76 25 64)(3 40 77 26 49)(4 41 78 27 50)(5 42 79 28 51)(6 43 80 29 52)(7 44 65 30 53)(8 45 66 31 54)(9 46 67 32 55)(10 47 68 17 56)(11 48 69 18 57)(12 33 70 19 58)(13 34 71 20 59)(14 35 72 21 60)(15 36 73 22 61)(16 37 74 23 62)
(2 10)(4 12)(6 14)(8 16)(17 39 68 64)(18 48 69 57)(19 41 70 50)(20 34 71 59)(21 43 72 52)(22 36 73 61)(23 45 74 54)(24 38 75 63)(25 47 76 56)(26 40 77 49)(27 33 78 58)(28 42 79 51)(29 35 80 60)(30 44 65 53)(31 37 66 62)(32 46 67 55)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,38,75,24,63)(2,39,76,25,64)(3,40,77,26,49)(4,41,78,27,50)(5,42,79,28,51)(6,43,80,29,52)(7,44,65,30,53)(8,45,66,31,54)(9,46,67,32,55)(10,47,68,17,56)(11,48,69,18,57)(12,33,70,19,58)(13,34,71,20,59)(14,35,72,21,60)(15,36,73,22,61)(16,37,74,23,62), (2,10)(4,12)(6,14)(8,16)(17,39,68,64)(18,48,69,57)(19,41,70,50)(20,34,71,59)(21,43,72,52)(22,36,73,61)(23,45,74,54)(24,38,75,63)(25,47,76,56)(26,40,77,49)(27,33,78,58)(28,42,79,51)(29,35,80,60)(30,44,65,53)(31,37,66,62)(32,46,67,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,38,75,24,63)(2,39,76,25,64)(3,40,77,26,49)(4,41,78,27,50)(5,42,79,28,51)(6,43,80,29,52)(7,44,65,30,53)(8,45,66,31,54)(9,46,67,32,55)(10,47,68,17,56)(11,48,69,18,57)(12,33,70,19,58)(13,34,71,20,59)(14,35,72,21,60)(15,36,73,22,61)(16,37,74,23,62), (2,10)(4,12)(6,14)(8,16)(17,39,68,64)(18,48,69,57)(19,41,70,50)(20,34,71,59)(21,43,72,52)(22,36,73,61)(23,45,74,54)(24,38,75,63)(25,47,76,56)(26,40,77,49)(27,33,78,58)(28,42,79,51)(29,35,80,60)(30,44,65,53)(31,37,66,62)(32,46,67,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,38,75,24,63),(2,39,76,25,64),(3,40,77,26,49),(4,41,78,27,50),(5,42,79,28,51),(6,43,80,29,52),(7,44,65,30,53),(8,45,66,31,54),(9,46,67,32,55),(10,47,68,17,56),(11,48,69,18,57),(12,33,70,19,58),(13,34,71,20,59),(14,35,72,21,60),(15,36,73,22,61),(16,37,74,23,62)], [(2,10),(4,12),(6,14),(8,16),(17,39,68,64),(18,48,69,57),(19,41,70,50),(20,34,71,59),(21,43,72,52),(22,36,73,61),(23,45,74,54),(24,38,75,63),(25,47,76,56),(26,40,77,49),(27,33,78,58),(28,42,79,51),(29,35,80,60),(30,44,65,53),(31,37,66,62),(32,46,67,55)]])

56 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H 5 8A8B8C8D8E8F8G8H8I8J8K8L 10 16A16B16C16D16E···16P20A20B40A40B40C40D80A···80H
order1222444444445888888888888101616161616···1620204040404080···80
size1155115510101010411115555101010104222210···104444444···4

56 irreducible representations

dim11111111111244444
type++++++
imageC1C2C2C2C4C4C4C4C4C8C8M5(2)F5C2×F5C4×F5C8×F5C167F5
kernelC167F5D5×C16D5⋊C16C8×F5C52C16C80C5⋊C16D5⋊C8C4×F5C5⋊C8C2×F5D5C16C8C4C2C1
# reps11112242288811248

Matrix representation of C167F5 in GL4(𝔽241) generated by

154174067
08717467
67174870
670174154
,
000240
100240
010240
001240
,
102400
002401
012400
002400
G:=sub<GL(4,GF(241))| [154,0,67,67,174,87,174,0,0,174,87,174,67,67,0,154],[0,1,0,0,0,0,1,0,0,0,0,1,240,240,240,240],[1,0,0,0,0,0,1,0,240,240,240,240,0,1,0,0] >;

C167F5 in GAP, Magma, Sage, TeX

C_{16}\rtimes_7F_5
% in TeX

G:=Group("C16:7F5");
// GroupNames label

G:=SmallGroup(320,182);
// by ID

G=gap.SmallGroup(320,182);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,477,64,80,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c|a^16=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^9,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C167F5 in TeX

׿
×
𝔽