Extensions 1→N→G→Q→1 with N=D42Dic5 and Q=C2

Direct product G=N×Q with N=D42Dic5 and Q=C2
dρLabelID
C2×D42Dic580C2xD4:2Dic5320,862

Semidirect products G=N:Q with N=D42Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
D42Dic51C2 = D5×C4≀C2φ: C2/C1C2 ⊆ Out D42Dic5404D4:2Dic5:1C2320,447
D42Dic52C2 = C42⋊D10φ: C2/C1C2 ⊆ Out D42Dic5804D4:2Dic5:2C2320,448
D42Dic53C2 = C40.50D4φ: C2/C1C2 ⊆ Out D42Dic5804D4:2Dic5:3C2320,772
D42Dic54C2 = D85Dic5φ: C2/C1C2 ⊆ Out D42Dic5804D4:2Dic5:4C2320,823
D42Dic55C2 = D84Dic5φ: C2/C1C2 ⊆ Out D42Dic5804D4:2Dic5:5C2320,824
D42Dic56C2 = D2018D4φ: C2/C1C2 ⊆ Out D42Dic5408+D4:2Dic5:6C2320,825
D42Dic57C2 = D20.38D4φ: C2/C1C2 ⊆ Out D42Dic5808-D4:2Dic5:7C2320,828
D42Dic58C2 = D20.39D4φ: C2/C1C2 ⊆ Out D42Dic5808+D4:2Dic5:8C2320,829
D42Dic59C2 = D20.40D4φ: C2/C1C2 ⊆ Out D42Dic5808-D4:2Dic5:9C2320,832
D42Dic510C2 = (D4×C10)⋊21C4φ: C2/C1C2 ⊆ Out D42Dic5804D4:2Dic5:10C2320,863
D42Dic511C2 = 2+ 1+4⋊D5φ: C2/C1C2 ⊆ Out D42Dic5408+D4:2Dic5:11C2320,868
D42Dic512C2 = 2+ 1+4.D5φ: C2/C1C2 ⊆ Out D42Dic5808-D4:2Dic5:12C2320,869
D42Dic513C2 = 2- 1+42D5φ: C2/C1C2 ⊆ Out D42Dic5808+D4:2Dic5:13C2320,872
D42Dic514C2 = 2- 1+4.2D5φ: C2/C1C2 ⊆ Out D42Dic5808-D4:2Dic5:14C2320,873
D42Dic515C2 = C40.93D4φ: trivial image804D4:2Dic5:15C2320,771


׿
×
𝔽