Copied to
clipboard

G = C40.50D4order 320 = 26·5

50th non-split extension by C40 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C40.50D4, M4(2).37D10, C8oD4:7D5, D4:D5:10C4, Q8:D5:10C4, D4.8(C4xD5), Q8.8(C4xD5), C5:7(C8.26D4), D4.D5:10C4, C40:8C4:29C2, C5:Q16:10C4, C4oD4.35D10, D20.33(C2xC4), C10.112(C4xD4), (C2xC8).191D10, C20.448(C2xD4), C8.47(C5:D4), D20:7C4:14C2, D4:2Dic5:3C2, C20.65(C22xC4), D20.3C4:14C2, C20.53D4:14C2, (C2xC40).237C22, (C2xC20).425C23, Dic10.34(C2xC4), D4.8D10.3C2, C4oD20.45C22, C22.4(C4oD20), (C4xDic5).47C22, C4.Dic5.45C22, (C5xM4(2)).40C22, C4.30(C2xC4xD5), (C5xC8oD4):7C2, C5:2C8.6(C2xC4), C2.27(C4xC5:D4), (C5xD4).29(C2xC4), C4.139(C2xC5:D4), (C5xQ8).30(C2xC4), (C2xC10).10(C4oD4), (C5xC4oD4).40C22, (C2xC4).515(C22xD5), (C2xC5:2C8).144C22, SmallGroup(320,772)

Series: Derived Chief Lower central Upper central

C1C20 — C40.50D4
C1C5C10C20C2xC20C4oD20D4.8D10 — C40.50D4
C5C10C20 — C40.50D4
C1C4C2xC8C8oD4

Generators and relations for C40.50D4
 G = < a,b,c | a40=c2=1, b4=a20, bab-1=a29, cac=a9, cbc=a20b3 >

Subgroups: 326 in 104 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, D5, C10, C10, C42, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, Q16, C4oD4, C4oD4, Dic5, C20, C20, D10, C2xC10, C2xC10, C8:C4, C4wrC2, C8.C4, C8oD4, C8oD4, C4oD8, C5:2C8, C5:2C8, C40, C40, Dic10, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C2xC20, C5xD4, C5xD4, C5xQ8, C8.26D4, C8xD5, C8:D5, C2xC5:2C8, C4.Dic5, C4xDic5, D4:D5, D4.D5, Q8:D5, C5:Q16, C2xC40, C2xC40, C5xM4(2), C5xM4(2), C4oD20, C5xC4oD4, C40:8C4, C20.53D4, D20:7C4, D4:2Dic5, D20.3C4, D4.8D10, C5xC8oD4, C40.50D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D5, C22xC4, C2xD4, C4oD4, D10, C4xD4, C4xD5, C5:D4, C22xD5, C8.26D4, C2xC4xD5, C4oD20, C2xC5:D4, C4xC5:D4, C40.50D4

Smallest permutation representation of C40.50D4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 16 11 26 21 36 31 6)(2 5 12 15 22 25 32 35)(3 34 13 4 23 14 33 24)(7 30 17 40 27 10 37 20)(8 19 18 29 28 39 38 9)(41 74 71 64 61 54 51 44)(42 63 72 53 62 43 52 73)(45 70 75 60 65 50 55 80)(46 59 76 49 66 79 56 69)(47 48 77 78 67 68 57 58)
(1 70)(2 79)(3 48)(4 57)(5 66)(6 75)(7 44)(8 53)(9 62)(10 71)(11 80)(12 49)(13 58)(14 67)(15 76)(16 45)(17 54)(18 63)(19 72)(20 41)(21 50)(22 59)(23 68)(24 77)(25 46)(26 55)(27 64)(28 73)(29 42)(30 51)(31 60)(32 69)(33 78)(34 47)(35 56)(36 65)(37 74)(38 43)(39 52)(40 61)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,16,11,26,21,36,31,6)(2,5,12,15,22,25,32,35)(3,34,13,4,23,14,33,24)(7,30,17,40,27,10,37,20)(8,19,18,29,28,39,38,9)(41,74,71,64,61,54,51,44)(42,63,72,53,62,43,52,73)(45,70,75,60,65,50,55,80)(46,59,76,49,66,79,56,69)(47,48,77,78,67,68,57,58), (1,70)(2,79)(3,48)(4,57)(5,66)(6,75)(7,44)(8,53)(9,62)(10,71)(11,80)(12,49)(13,58)(14,67)(15,76)(16,45)(17,54)(18,63)(19,72)(20,41)(21,50)(22,59)(23,68)(24,77)(25,46)(26,55)(27,64)(28,73)(29,42)(30,51)(31,60)(32,69)(33,78)(34,47)(35,56)(36,65)(37,74)(38,43)(39,52)(40,61)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,16,11,26,21,36,31,6)(2,5,12,15,22,25,32,35)(3,34,13,4,23,14,33,24)(7,30,17,40,27,10,37,20)(8,19,18,29,28,39,38,9)(41,74,71,64,61,54,51,44)(42,63,72,53,62,43,52,73)(45,70,75,60,65,50,55,80)(46,59,76,49,66,79,56,69)(47,48,77,78,67,68,57,58), (1,70)(2,79)(3,48)(4,57)(5,66)(6,75)(7,44)(8,53)(9,62)(10,71)(11,80)(12,49)(13,58)(14,67)(15,76)(16,45)(17,54)(18,63)(19,72)(20,41)(21,50)(22,59)(23,68)(24,77)(25,46)(26,55)(27,64)(28,73)(29,42)(30,51)(31,60)(32,69)(33,78)(34,47)(35,56)(36,65)(37,74)(38,43)(39,52)(40,61) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,16,11,26,21,36,31,6),(2,5,12,15,22,25,32,35),(3,34,13,4,23,14,33,24),(7,30,17,40,27,10,37,20),(8,19,18,29,28,39,38,9),(41,74,71,64,61,54,51,44),(42,63,72,53,62,43,52,73),(45,70,75,60,65,50,55,80),(46,59,76,49,66,79,56,69),(47,48,77,78,67,68,57,58)], [(1,70),(2,79),(3,48),(4,57),(5,66),(6,75),(7,44),(8,53),(9,62),(10,71),(11,80),(12,49),(13,58),(14,67),(15,76),(16,45),(17,54),(18,63),(19,72),(20,41),(21,50),(22,59),(23,68),(24,77),(25,46),(26,55),(27,64),(28,73),(29,42),(30,51),(31,60),(32,69),(33,78),(34,47),(35,56),(36,65),(37,74),(38,43),(39,52),(40,61)]])

62 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G5A5B8A8B8C8D8E8F8G8H8I8J10A10B10C···10H20A20B20C20D20E···20J40A···40H40I···40T
order122224444444558888888888101010···102020202020···2040···4040···40
size11242011242020202222224420202020224···422224···42···24···4

62 irreducible representations

dim111111111111222222222244
type+++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D5C4oD4D10D10D10C5:D4C4xD5C4xD5C4oD20C8.26D4C40.50D4
kernelC40.50D4C40:8C4C20.53D4D20:7C4D4:2Dic5D20.3C4D4.8D10C5xC8oD4D4:D5D4.D5Q8:D5C5:Q16C40C8oD4C2xC10C2xC8M4(2)C4oD4C8D4Q8C22C5C1
# reps111111112222222222844828

Matrix representation of C40.50D4 in GL4(F41) generated by

343400
73500
0077
00346
,
131900
232800
00357
0026
,
00357
0026
131900
232800
G:=sub<GL(4,GF(41))| [34,7,0,0,34,35,0,0,0,0,7,34,0,0,7,6],[13,23,0,0,19,28,0,0,0,0,35,2,0,0,7,6],[0,0,13,23,0,0,19,28,35,2,0,0,7,6,0,0] >;

C40.50D4 in GAP, Magma, Sage, TeX

C_{40}._{50}D_4
% in TeX

G:=Group("C40.50D4");
// GroupNames label

G:=SmallGroup(320,772);
// by ID

G=gap.SmallGroup(320,772);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,387,58,136,1684,851,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=c^2=1,b^4=a^20,b*a*b^-1=a^29,c*a*c=a^9,c*b*c=a^20*b^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<