Extensions 1→N→G→Q→1 with N=D4×F5 and Q=C2

Direct product G=N×Q with N=D4×F5 and Q=C2
dρLabelID
C2×D4×F540C2xD4xF5320,1595

Semidirect products G=N:Q with N=D4×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×F5)⋊1C2 = D8×F5φ: C2/C1C2 ⊆ Out D4×F5408+(D4xF5):1C2320,1068
(D4×F5)⋊2C2 = D40⋊C4φ: C2/C1C2 ⊆ Out D4×F5408+(D4xF5):2C2320,1069
(D4×F5)⋊3C2 = D10.C24φ: C2/C1C2 ⊆ Out D4×F5408+(D4xF5):3C2320,1596
(D4×F5)⋊4C2 = D5.2+ 1+4φ: C2/C1C2 ⊆ Out D4×F5408(D4xF5):4C2320,1604
(D4×F5)⋊5C2 = C4○D4×F5φ: trivial image408(D4xF5):5C2320,1603

Non-split extensions G=N.Q with N=D4×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×F5).1C2 = SD16×F5φ: C2/C1C2 ⊆ Out D4×F5408(D4xF5).1C2320,1072
(D4×F5).2C2 = SD16⋊F5φ: C2/C1C2 ⊆ Out D4×F5408(D4xF5).2C2320,1073

׿
×
𝔽