Extensions 1→N→G→Q→1 with N=C2×C8 and Q=F5

Direct product G=N×Q with N=C2×C8 and Q=F5
dρLabelID
C2×C8×F580C2xC8xF5320,1054

Semidirect products G=N:Q with N=C2×C8 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1F5 = (C2×C8)⋊F5φ: F5/C5C4 ⊆ Aut C2×C8804(C2xC8):1F5320,232
(C2×C8)⋊2F5 = C20.24C42φ: F5/C5C4 ⊆ Aut C2×C8804(C2xC8):2F5320,233
(C2×C8)⋊3F5 = D10.3M4(2)φ: F5/D5C2 ⊆ Aut C2×C880(C2xC8):3F5320,230
(C2×C8)⋊4F5 = D10.10D8φ: F5/D5C2 ⊆ Aut C2×C880(C2xC8):4F5320,231
(C2×C8)⋊5F5 = C2×D5.D8φ: F5/D5C2 ⊆ Aut C2×C880(C2xC8):5F5320,1058
(C2×C8)⋊6F5 = (C2×C8)⋊6F5φ: F5/D5C2 ⊆ Aut C2×C8804(C2xC8):6F5320,1059
(C2×C8)⋊7F5 = C2×C40⋊C4φ: F5/D5C2 ⊆ Aut C2×C880(C2xC8):7F5320,1057
(C2×C8)⋊8F5 = C2×C8⋊F5φ: F5/D5C2 ⊆ Aut C2×C880(C2xC8):8F5320,1055
(C2×C8)⋊9F5 = C20.12C42φ: F5/D5C2 ⊆ Aut C2×C8804(C2xC8):9F5320,1056

Non-split extensions G=N.Q with N=C2×C8 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C2×C8).1F5 = C20.23C42φ: F5/C5C4 ⊆ Aut C2×C8804(C2xC8).1F5320,228
(C2×C8).2F5 = C20.10M4(2)φ: F5/C5C4 ⊆ Aut C2×C8804(C2xC8).2F5320,229
(C2×C8).3F5 = C20.25C42φ: F5/C5C4 ⊆ Aut C2×C8804(C2xC8).3F5320,235
(C2×C8).4F5 = C20.31M4(2)φ: F5/D5C2 ⊆ Aut C2×C8320(C2xC8).4F5320,218
(C2×C8).5F5 = C20.26M4(2)φ: F5/D5C2 ⊆ Aut C2×C8320(C2xC8).5F5320,221
(C2×C8).6F5 = Dic5.13D8φ: F5/D5C2 ⊆ Aut C2×C8320(C2xC8).6F5320,222
(C2×C8).7F5 = D10⋊C16φ: F5/D5C2 ⊆ Aut C2×C8160(C2xC8).7F5320,225
(C2×C8).8F5 = C10.M5(2)φ: F5/D5C2 ⊆ Aut C2×C8320(C2xC8).8F5320,226
(C2×C8).9F5 = C20.10C42φ: F5/D5C2 ⊆ Aut C2×C8160(C2xC8).9F5320,234
(C2×C8).10F5 = C401C8φ: F5/D5C2 ⊆ Aut C2×C8320(C2xC8).10F5320,220
(C2×C8).11F5 = C2×D10.Q8φ: F5/D5C2 ⊆ Aut C2×C8160(C2xC8).11F5320,1061
(C2×C8).12F5 = C40.1C8φ: F5/D5C2 ⊆ Aut C2×C8804(C2xC8).12F5320,227
(C2×C8).13F5 = (C8×D5).C4φ: F5/D5C2 ⊆ Aut C2×C8804(C2xC8).13F5320,1062
(C2×C8).14F5 = C402C8φ: F5/D5C2 ⊆ Aut C2×C8320(C2xC8).14F5320,219
(C2×C8).15F5 = C2×C40.C4φ: F5/D5C2 ⊆ Aut C2×C8160(C2xC8).15F5320,1060
(C2×C8).16F5 = C5⋊M6(2)φ: F5/D5C2 ⊆ Aut C2×C81604(C2xC8).16F5320,215
(C2×C8).17F5 = C40⋊C8φ: F5/D5C2 ⊆ Aut C2×C8320(C2xC8).17F5320,217
(C2×C8).18F5 = C40.C8φ: F5/D5C2 ⊆ Aut C2×C8320(C2xC8).18F5320,224
(C2×C8).19F5 = C2×C8.F5φ: F5/D5C2 ⊆ Aut C2×C8160(C2xC8).19F5320,1052
(C2×C8).20F5 = D5⋊M5(2)φ: F5/D5C2 ⊆ Aut C2×C8804(C2xC8).20F5320,1053
(C2×C8).21F5 = C2×C5⋊C32central extension (φ=1)320(C2xC8).21F5320,214
(C2×C8).22F5 = C8×C5⋊C8central extension (φ=1)320(C2xC8).22F5320,216
(C2×C8).23F5 = Dic5⋊C16central extension (φ=1)320(C2xC8).23F5320,223
(C2×C8).24F5 = C2×D5⋊C16central extension (φ=1)160(C2xC8).24F5320,1051

׿
×
𝔽