metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×C8)⋊6F5, (C2×C40)⋊6C4, (C8×D5)⋊7C4, D5.D8⋊5C2, C40⋊C4⋊6C2, C8.27(C2×F5), C40.24(C2×C4), (C4×D5).89D4, C4.30(C4⋊F5), C20.30(C4⋊C4), (C4×D5).32Q8, D5.1(C4○D8), D10.31(C2×D4), C5⋊(C23.25D4), C4⋊F5.17C22, C22.5(C4⋊F5), D10.29(C4⋊C4), C4.37(C22×F5), C20.77(C22×C4), Dic5.15(C2×Q8), (C2×Dic5).35Q8, (C4×D5).77C23, (C8×D5).54C22, (C22×D5).99D4, Dic5.30(C4⋊C4), D10.C23.11C2, (D5×C2×C8).22C2, (C2×C5⋊2C8)⋊20C4, C2.16(C2×C4⋊F5), C10.13(C2×C4⋊C4), C5⋊2C8.47(C2×C4), (C4×D5).86(C2×C4), (C2×C4).138(C2×F5), (C2×C10).21(C4⋊C4), (C2×C20).147(C2×C4), (C2×C4×D5).403C22, SmallGroup(320,1059)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C2×C8)⋊6F5
G = < a,b,c,d | a2=b8=c5=d4=1, ab=ba, ac=ca, dad-1=ab4, bc=cb, dbd-1=b3, dcd-1=c3 >
Subgroups: 442 in 114 conjugacy classes, 50 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C4.Q8, C2.D8, C42⋊C2, C22×C8, C5⋊2C8, C40, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C23.25D4, C8×D5, C2×C5⋊2C8, C2×C40, C4×F5, C4⋊F5, C22⋊F5, C2×C4×D5, C40⋊C4, D5.D8, D5×C2×C8, D10.C23, (C2×C8)⋊6F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, F5, C2×C4⋊C4, C4○D8, C2×F5, C23.25D4, C4⋊F5, C22×F5, C2×C4⋊F5, (C2×C8)⋊6F5
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 69)(10 70)(11 71)(12 72)(13 65)(14 66)(15 67)(16 68)(25 55)(26 56)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 63)(34 64)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)(41 77)(42 78)(43 79)(44 80)(45 73)(46 74)(47 75)(48 76)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 50 42 71 59)(2 51 43 72 60)(3 52 44 65 61)(4 53 45 66 62)(5 54 46 67 63)(6 55 47 68 64)(7 56 48 69 57)(8 49 41 70 58)(9 35 19 26 76)(10 36 20 27 77)(11 37 21 28 78)(12 38 22 29 79)(13 39 23 30 80)(14 40 24 31 73)(15 33 17 32 74)(16 34 18 25 75)
(1 19 5 23)(2 22 6 18)(3 17 7 21)(4 20 8 24)(9 54 80 59)(10 49 73 62)(11 52 74 57)(12 55 75 60)(13 50 76 63)(14 53 77 58)(15 56 78 61)(16 51 79 64)(25 43 38 68)(26 46 39 71)(27 41 40 66)(28 44 33 69)(29 47 34 72)(30 42 35 67)(31 45 36 70)(32 48 37 65)
G:=sub<Sym(80)| (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,69)(10,70)(11,71)(12,72)(13,65)(14,66)(15,67)(16,68)(25,55)(26,56)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,50,42,71,59)(2,51,43,72,60)(3,52,44,65,61)(4,53,45,66,62)(5,54,46,67,63)(6,55,47,68,64)(7,56,48,69,57)(8,49,41,70,58)(9,35,19,26,76)(10,36,20,27,77)(11,37,21,28,78)(12,38,22,29,79)(13,39,23,30,80)(14,40,24,31,73)(15,33,17,32,74)(16,34,18,25,75), (1,19,5,23)(2,22,6,18)(3,17,7,21)(4,20,8,24)(9,54,80,59)(10,49,73,62)(11,52,74,57)(12,55,75,60)(13,50,76,63)(14,53,77,58)(15,56,78,61)(16,51,79,64)(25,43,38,68)(26,46,39,71)(27,41,40,66)(28,44,33,69)(29,47,34,72)(30,42,35,67)(31,45,36,70)(32,48,37,65)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,69)(10,70)(11,71)(12,72)(13,65)(14,66)(15,67)(16,68)(25,55)(26,56)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,50,42,71,59)(2,51,43,72,60)(3,52,44,65,61)(4,53,45,66,62)(5,54,46,67,63)(6,55,47,68,64)(7,56,48,69,57)(8,49,41,70,58)(9,35,19,26,76)(10,36,20,27,77)(11,37,21,28,78)(12,38,22,29,79)(13,39,23,30,80)(14,40,24,31,73)(15,33,17,32,74)(16,34,18,25,75), (1,19,5,23)(2,22,6,18)(3,17,7,21)(4,20,8,24)(9,54,80,59)(10,49,73,62)(11,52,74,57)(12,55,75,60)(13,50,76,63)(14,53,77,58)(15,56,78,61)(16,51,79,64)(25,43,38,68)(26,46,39,71)(27,41,40,66)(28,44,33,69)(29,47,34,72)(30,42,35,67)(31,45,36,70)(32,48,37,65) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,69),(10,70),(11,71),(12,72),(13,65),(14,66),(15,67),(16,68),(25,55),(26,56),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,63),(34,64),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62),(41,77),(42,78),(43,79),(44,80),(45,73),(46,74),(47,75),(48,76)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,50,42,71,59),(2,51,43,72,60),(3,52,44,65,61),(4,53,45,66,62),(5,54,46,67,63),(6,55,47,68,64),(7,56,48,69,57),(8,49,41,70,58),(9,35,19,26,76),(10,36,20,27,77),(11,37,21,28,78),(12,38,22,29,79),(13,39,23,30,80),(14,40,24,31,73),(15,33,17,32,74),(16,34,18,25,75)], [(1,19,5,23),(2,22,6,18),(3,17,7,21),(4,20,8,24),(9,54,80,59),(10,49,73,62),(11,52,74,57),(12,55,75,60),(13,50,76,63),(14,53,77,58),(15,56,78,61),(16,51,79,64),(25,43,38,68),(26,46,39,71),(27,41,40,66),(28,44,33,69),(29,47,34,72),(30,42,35,67),(31,45,36,70),(32,48,37,65)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 5 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 10A | 10B | 10C | 20A | 20B | 20C | 20D | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 5 | 5 | 10 | 1 | 1 | 2 | 5 | 5 | 10 | 20 | ··· | 20 | 4 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | - | - | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | Q8 | D4 | C4○D8 | F5 | C2×F5 | C2×F5 | C4⋊F5 | C4⋊F5 | (C2×C8)⋊6F5 |
kernel | (C2×C8)⋊6F5 | C40⋊C4 | D5.D8 | D5×C2×C8 | D10.C23 | C8×D5 | C2×C5⋊2C8 | C2×C40 | C4×D5 | C4×D5 | C2×Dic5 | C22×D5 | D5 | C2×C8 | C8 | C2×C4 | C4 | C22 | C1 |
# reps | 1 | 2 | 2 | 1 | 2 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 8 | 1 | 2 | 1 | 2 | 2 | 8 |
Matrix representation of (C2×C8)⋊6F5 ►in GL6(𝔽41)
32 | 23 | 0 | 0 | 0 | 0 |
9 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
11 | 11 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 40 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 |
G:=sub<GL(6,GF(41))| [32,9,0,0,0,0,23,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[11,15,0,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[40,1,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,1,0,0,0,0,40,1,0,0,0,0,0,1,0,0,0,40,0,1] >;
(C2×C8)⋊6F5 in GAP, Magma, Sage, TeX
(C_2\times C_8)\rtimes_6F_5
% in TeX
G:=Group("(C2xC8):6F5");
// GroupNames label
G:=SmallGroup(320,1059);
// by ID
G=gap.SmallGroup(320,1059);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,100,1684,102,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^4,b*c=c*b,d*b*d^-1=b^3,d*c*d^-1=c^3>;
// generators/relations