Copied to
clipboard

G = (C2×C8)⋊6F5order 320 = 26·5

4th semidirect product of C2×C8 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C8)⋊6F5, (C2×C40)⋊6C4, (C8×D5)⋊7C4, D5.D85C2, C40⋊C46C2, C8.27(C2×F5), C40.24(C2×C4), (C4×D5).89D4, C4.30(C4⋊F5), C20.30(C4⋊C4), (C4×D5).32Q8, D5.1(C4○D8), D10.31(C2×D4), C5⋊(C23.25D4), C4⋊F5.17C22, C22.5(C4⋊F5), D10.29(C4⋊C4), C4.37(C22×F5), C20.77(C22×C4), Dic5.15(C2×Q8), (C2×Dic5).35Q8, (C4×D5).77C23, (C8×D5).54C22, (C22×D5).99D4, Dic5.30(C4⋊C4), D10.C23.11C2, (D5×C2×C8).22C2, (C2×C52C8)⋊20C4, C2.16(C2×C4⋊F5), C10.13(C2×C4⋊C4), C52C8.47(C2×C4), (C4×D5).86(C2×C4), (C2×C4).138(C2×F5), (C2×C10).21(C4⋊C4), (C2×C20).147(C2×C4), (C2×C4×D5).403C22, SmallGroup(320,1059)

Series: Derived Chief Lower central Upper central

C1C20 — (C2×C8)⋊6F5
C1C5C10D10C4×D5C4⋊F5D10.C23 — (C2×C8)⋊6F5
C5C10C20 — (C2×C8)⋊6F5
C1C4C2×C4C2×C8

Generators and relations for (C2×C8)⋊6F5
 G = < a,b,c,d | a2=b8=c5=d4=1, ab=ba, ac=ca, dad-1=ab4, bc=cb, dbd-1=b3, dcd-1=c3 >

Subgroups: 442 in 114 conjugacy classes, 50 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C4.Q8, C2.D8, C42⋊C2, C22×C8, C52C8, C40, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C23.25D4, C8×D5, C2×C52C8, C2×C40, C4×F5, C4⋊F5, C22⋊F5, C2×C4×D5, C40⋊C4, D5.D8, D5×C2×C8, D10.C23, (C2×C8)⋊6F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, F5, C2×C4⋊C4, C4○D8, C2×F5, C23.25D4, C4⋊F5, C22×F5, C2×C4⋊F5, (C2×C8)⋊6F5

Smallest permutation representation of (C2×C8)⋊6F5
On 80 points
Generators in S80
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 69)(10 70)(11 71)(12 72)(13 65)(14 66)(15 67)(16 68)(25 55)(26 56)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 63)(34 64)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)(41 77)(42 78)(43 79)(44 80)(45 73)(46 74)(47 75)(48 76)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 50 42 71 59)(2 51 43 72 60)(3 52 44 65 61)(4 53 45 66 62)(5 54 46 67 63)(6 55 47 68 64)(7 56 48 69 57)(8 49 41 70 58)(9 35 19 26 76)(10 36 20 27 77)(11 37 21 28 78)(12 38 22 29 79)(13 39 23 30 80)(14 40 24 31 73)(15 33 17 32 74)(16 34 18 25 75)
(1 19 5 23)(2 22 6 18)(3 17 7 21)(4 20 8 24)(9 54 80 59)(10 49 73 62)(11 52 74 57)(12 55 75 60)(13 50 76 63)(14 53 77 58)(15 56 78 61)(16 51 79 64)(25 43 38 68)(26 46 39 71)(27 41 40 66)(28 44 33 69)(29 47 34 72)(30 42 35 67)(31 45 36 70)(32 48 37 65)

G:=sub<Sym(80)| (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,69)(10,70)(11,71)(12,72)(13,65)(14,66)(15,67)(16,68)(25,55)(26,56)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,50,42,71,59)(2,51,43,72,60)(3,52,44,65,61)(4,53,45,66,62)(5,54,46,67,63)(6,55,47,68,64)(7,56,48,69,57)(8,49,41,70,58)(9,35,19,26,76)(10,36,20,27,77)(11,37,21,28,78)(12,38,22,29,79)(13,39,23,30,80)(14,40,24,31,73)(15,33,17,32,74)(16,34,18,25,75), (1,19,5,23)(2,22,6,18)(3,17,7,21)(4,20,8,24)(9,54,80,59)(10,49,73,62)(11,52,74,57)(12,55,75,60)(13,50,76,63)(14,53,77,58)(15,56,78,61)(16,51,79,64)(25,43,38,68)(26,46,39,71)(27,41,40,66)(28,44,33,69)(29,47,34,72)(30,42,35,67)(31,45,36,70)(32,48,37,65)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,69)(10,70)(11,71)(12,72)(13,65)(14,66)(15,67)(16,68)(25,55)(26,56)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,63)(34,64)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,50,42,71,59)(2,51,43,72,60)(3,52,44,65,61)(4,53,45,66,62)(5,54,46,67,63)(6,55,47,68,64)(7,56,48,69,57)(8,49,41,70,58)(9,35,19,26,76)(10,36,20,27,77)(11,37,21,28,78)(12,38,22,29,79)(13,39,23,30,80)(14,40,24,31,73)(15,33,17,32,74)(16,34,18,25,75), (1,19,5,23)(2,22,6,18)(3,17,7,21)(4,20,8,24)(9,54,80,59)(10,49,73,62)(11,52,74,57)(12,55,75,60)(13,50,76,63)(14,53,77,58)(15,56,78,61)(16,51,79,64)(25,43,38,68)(26,46,39,71)(27,41,40,66)(28,44,33,69)(29,47,34,72)(30,42,35,67)(31,45,36,70)(32,48,37,65) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,69),(10,70),(11,71),(12,72),(13,65),(14,66),(15,67),(16,68),(25,55),(26,56),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,63),(34,64),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62),(41,77),(42,78),(43,79),(44,80),(45,73),(46,74),(47,75),(48,76)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,50,42,71,59),(2,51,43,72,60),(3,52,44,65,61),(4,53,45,66,62),(5,54,46,67,63),(6,55,47,68,64),(7,56,48,69,57),(8,49,41,70,58),(9,35,19,26,76),(10,36,20,27,77),(11,37,21,28,78),(12,38,22,29,79),(13,39,23,30,80),(14,40,24,31,73),(15,33,17,32,74),(16,34,18,25,75)], [(1,19,5,23),(2,22,6,18),(3,17,7,21),(4,20,8,24),(9,54,80,59),(10,49,73,62),(11,52,74,57),(12,55,75,60),(13,50,76,63),(14,53,77,58),(15,56,78,61),(16,51,79,64),(25,43,38,68),(26,46,39,71),(27,41,40,66),(28,44,33,69),(29,47,34,72),(30,42,35,67),(31,45,36,70),(32,48,37,65)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N 5 8A8B8C8D8E8F8G8H10A10B10C20A20B20C20D40A···40H
order1222224444444···45888888881010102020202040···40
size1125510112551020···20422221010101044444444···4

44 irreducible representations

dim1111111122222444444
type++++++--++++
imageC1C2C2C2C2C4C4C4D4Q8Q8D4C4○D8F5C2×F5C2×F5C4⋊F5C4⋊F5(C2×C8)⋊6F5
kernel(C2×C8)⋊6F5C40⋊C4D5.D8D5×C2×C8D10.C23C8×D5C2×C52C8C2×C40C4×D5C4×D5C2×Dic5C22×D5D5C2×C8C8C2×C4C4C22C1
# reps1221242211118121228

Matrix representation of (C2×C8)⋊6F5 in GL6(𝔽41)

32230000
990000
0040000
0004000
0000400
0000040
,
11110000
1500000
001000
000100
000010
000001
,
100000
010000
0040404040
001000
000100
000010
,
4000000
110000
0040000
0000040
0004000
001111

G:=sub<GL(6,GF(41))| [32,9,0,0,0,0,23,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[11,15,0,0,0,0,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[40,1,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,1,0,0,0,0,40,1,0,0,0,0,0,1,0,0,0,40,0,1] >;

(C2×C8)⋊6F5 in GAP, Magma, Sage, TeX

(C_2\times C_8)\rtimes_6F_5
% in TeX

G:=Group("(C2xC8):6F5");
// GroupNames label

G:=SmallGroup(320,1059);
// by ID

G=gap.SmallGroup(320,1059);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,100,1684,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^4,b*c=c*b,d*b*d^-1=b^3,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽