Copied to
clipboard

G = D10⋊C16order 320 = 26·5

2nd semidirect product of D10 and C16 acting via C16/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D102C16, C10.2M5(2), C20.13M4(2), (C2×C8).7F5, (C2×C40).4C4, C51(C22⋊C16), C10.4(C2×C16), C52C8.53D4, C2.4(D5⋊C16), (C22×D5).6C8, C4.11(C4.F5), C10.3(C22⋊C8), C22.9(D5⋊C8), (C2×Dic5).10C8, C4.35(C22⋊F5), C2.2(C8.F5), C2.1(D10⋊C8), C20.33(C22⋊C4), (C2×C5⋊C16)⋊5C2, (C2×C4×D5).41C4, (D5×C2×C8).10C2, (C2×C10).5(C2×C8), (C2×C4).155(C2×F5), (C2×C20).161(C2×C4), (C2×C52C8).345C22, SmallGroup(320,225)

Series: Derived Chief Lower central Upper central

C1C10 — D10⋊C16
C1C5C10C20C52C8C2×C52C8C2×C5⋊C16 — D10⋊C16
C5C10 — D10⋊C16
C1C2×C4C2×C8

Generators and relations for D10⋊C16
 G = < a,b,c | a10=b2=c16=1, bab=a-1, cac-1=a3, cbc-1=a7b >

Subgroups: 226 in 66 conjugacy classes, 30 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, D5, C10, C16, C2×C8, C2×C8, C22×C4, Dic5, C20, D10, D10, C2×C10, C2×C16, C22×C8, C52C8, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, C22⋊C16, C5⋊C16, C8×D5, C2×C52C8, C2×C40, C2×C4×D5, C2×C5⋊C16, D5×C2×C8, D10⋊C16
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C16, C22⋊C4, C2×C8, M4(2), F5, C22⋊C8, C2×C16, M5(2), C2×F5, C22⋊C16, D5⋊C8, C4.F5, C22⋊F5, D5⋊C16, C8.F5, D10⋊C8, D10⋊C16

Smallest permutation representation of D10⋊C16
On 160 points
Generators in S160
(1 79 95 103 141 54 150 120 18 39)(2 104 151 40 96 55 19 80 142 121)(3 41 20 122 152 56 143 105 81 65)(4 123 144 66 21 57 82 42 153 106)(5 67 83 107 129 58 154 124 22 43)(6 108 155 44 84 59 23 68 130 125)(7 45 24 126 156 60 131 109 85 69)(8 127 132 70 25 61 86 46 157 110)(9 71 87 111 133 62 158 128 26 47)(10 112 159 48 88 63 27 72 134 113)(11 33 28 114 160 64 135 97 89 73)(12 115 136 74 29 49 90 34 145 98)(13 75 91 99 137 50 146 116 30 35)(14 100 147 36 92 51 31 76 138 117)(15 37 32 118 148 52 139 101 93 77)(16 119 140 78 17 53 94 38 149 102)
(1 47)(2 88)(3 73)(4 29)(5 35)(6 92)(7 77)(8 17)(9 39)(10 96)(11 65)(12 21)(13 43)(14 84)(15 69)(16 25)(18 71)(19 134)(20 97)(22 75)(23 138)(24 101)(26 79)(27 142)(28 105)(30 67)(31 130)(32 109)(33 81)(34 42)(36 108)(37 85)(38 46)(40 112)(41 89)(44 100)(45 93)(48 104)(49 106)(50 129)(51 125)(52 156)(53 110)(54 133)(55 113)(56 160)(57 98)(58 137)(59 117)(60 148)(61 102)(62 141)(63 121)(64 152)(66 115)(68 76)(70 119)(72 80)(74 123)(78 127)(82 145)(83 116)(86 149)(87 120)(90 153)(91 124)(94 157)(95 128)(99 154)(103 158)(107 146)(111 150)(114 143)(118 131)(122 135)(126 139)(132 140)(136 144)(147 155)(151 159)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,79,95,103,141,54,150,120,18,39)(2,104,151,40,96,55,19,80,142,121)(3,41,20,122,152,56,143,105,81,65)(4,123,144,66,21,57,82,42,153,106)(5,67,83,107,129,58,154,124,22,43)(6,108,155,44,84,59,23,68,130,125)(7,45,24,126,156,60,131,109,85,69)(8,127,132,70,25,61,86,46,157,110)(9,71,87,111,133,62,158,128,26,47)(10,112,159,48,88,63,27,72,134,113)(11,33,28,114,160,64,135,97,89,73)(12,115,136,74,29,49,90,34,145,98)(13,75,91,99,137,50,146,116,30,35)(14,100,147,36,92,51,31,76,138,117)(15,37,32,118,148,52,139,101,93,77)(16,119,140,78,17,53,94,38,149,102), (1,47)(2,88)(3,73)(4,29)(5,35)(6,92)(7,77)(8,17)(9,39)(10,96)(11,65)(12,21)(13,43)(14,84)(15,69)(16,25)(18,71)(19,134)(20,97)(22,75)(23,138)(24,101)(26,79)(27,142)(28,105)(30,67)(31,130)(32,109)(33,81)(34,42)(36,108)(37,85)(38,46)(40,112)(41,89)(44,100)(45,93)(48,104)(49,106)(50,129)(51,125)(52,156)(53,110)(54,133)(55,113)(56,160)(57,98)(58,137)(59,117)(60,148)(61,102)(62,141)(63,121)(64,152)(66,115)(68,76)(70,119)(72,80)(74,123)(78,127)(82,145)(83,116)(86,149)(87,120)(90,153)(91,124)(94,157)(95,128)(99,154)(103,158)(107,146)(111,150)(114,143)(118,131)(122,135)(126,139)(132,140)(136,144)(147,155)(151,159), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,79,95,103,141,54,150,120,18,39)(2,104,151,40,96,55,19,80,142,121)(3,41,20,122,152,56,143,105,81,65)(4,123,144,66,21,57,82,42,153,106)(5,67,83,107,129,58,154,124,22,43)(6,108,155,44,84,59,23,68,130,125)(7,45,24,126,156,60,131,109,85,69)(8,127,132,70,25,61,86,46,157,110)(9,71,87,111,133,62,158,128,26,47)(10,112,159,48,88,63,27,72,134,113)(11,33,28,114,160,64,135,97,89,73)(12,115,136,74,29,49,90,34,145,98)(13,75,91,99,137,50,146,116,30,35)(14,100,147,36,92,51,31,76,138,117)(15,37,32,118,148,52,139,101,93,77)(16,119,140,78,17,53,94,38,149,102), (1,47)(2,88)(3,73)(4,29)(5,35)(6,92)(7,77)(8,17)(9,39)(10,96)(11,65)(12,21)(13,43)(14,84)(15,69)(16,25)(18,71)(19,134)(20,97)(22,75)(23,138)(24,101)(26,79)(27,142)(28,105)(30,67)(31,130)(32,109)(33,81)(34,42)(36,108)(37,85)(38,46)(40,112)(41,89)(44,100)(45,93)(48,104)(49,106)(50,129)(51,125)(52,156)(53,110)(54,133)(55,113)(56,160)(57,98)(58,137)(59,117)(60,148)(61,102)(62,141)(63,121)(64,152)(66,115)(68,76)(70,119)(72,80)(74,123)(78,127)(82,145)(83,116)(86,149)(87,120)(90,153)(91,124)(94,157)(95,128)(99,154)(103,158)(107,146)(111,150)(114,143)(118,131)(122,135)(126,139)(132,140)(136,144)(147,155)(151,159), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,79,95,103,141,54,150,120,18,39),(2,104,151,40,96,55,19,80,142,121),(3,41,20,122,152,56,143,105,81,65),(4,123,144,66,21,57,82,42,153,106),(5,67,83,107,129,58,154,124,22,43),(6,108,155,44,84,59,23,68,130,125),(7,45,24,126,156,60,131,109,85,69),(8,127,132,70,25,61,86,46,157,110),(9,71,87,111,133,62,158,128,26,47),(10,112,159,48,88,63,27,72,134,113),(11,33,28,114,160,64,135,97,89,73),(12,115,136,74,29,49,90,34,145,98),(13,75,91,99,137,50,146,116,30,35),(14,100,147,36,92,51,31,76,138,117),(15,37,32,118,148,52,139,101,93,77),(16,119,140,78,17,53,94,38,149,102)], [(1,47),(2,88),(3,73),(4,29),(5,35),(6,92),(7,77),(8,17),(9,39),(10,96),(11,65),(12,21),(13,43),(14,84),(15,69),(16,25),(18,71),(19,134),(20,97),(22,75),(23,138),(24,101),(26,79),(27,142),(28,105),(30,67),(31,130),(32,109),(33,81),(34,42),(36,108),(37,85),(38,46),(40,112),(41,89),(44,100),(45,93),(48,104),(49,106),(50,129),(51,125),(52,156),(53,110),(54,133),(55,113),(56,160),(57,98),(58,137),(59,117),(60,148),(61,102),(62,141),(63,121),(64,152),(66,115),(68,76),(70,119),(72,80),(74,123),(78,127),(82,145),(83,116),(86,149),(87,120),(90,153),(91,124),(94,157),(95,128),(99,154),(103,158),(107,146),(111,150),(114,143),(118,131),(122,135),(126,139),(132,140),(136,144),(147,155),(151,159)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F 5 8A8B8C8D8E···8L10A10B10C16A···16P20A20B20C20D40A···40H
order122222444444588888···810101016···162020202040···40
size1111101011111010422225···544410···1044444···4

56 irreducible representations

dim111111112224444444
type+++++++
imageC1C2C2C4C4C8C8C16D4M4(2)M5(2)F5C2×F5C4.F5C22⋊F5D5⋊C8D5⋊C16C8.F5
kernelD10⋊C16C2×C5⋊C16D5×C2×C8C2×C40C2×C4×D5C2×Dic5C22×D5D10C52C8C20C10C2×C8C2×C4C4C4C22C2C2
# reps1212244162241122244

Matrix representation of D10⋊C16 in GL8(𝔽241)

2400000000
0240000000
0024000000
0002400000
0000002401
0000002400
0000102400
0000012400
,
10000000
165240000000
0024000000
0023910000
0000012400
0000102400
0000002400
0000002401
,
165239000000
076000000
0012400000
0022400000
00001141271410
0000141270114
0000114012714
00000141127114

G:=sub<GL(8,GF(241))| [240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,240,240,240,240,0,0,0,0,1,0,0,0],[1,165,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,239,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,240,240,240,0,0,0,0,0,0,0,1],[165,0,0,0,0,0,0,0,239,76,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,240,240,0,0,0,0,0,0,0,0,114,14,114,0,0,0,0,0,127,127,0,141,0,0,0,0,141,0,127,127,0,0,0,0,0,114,14,114] >;

D10⋊C16 in GAP, Magma, Sage, TeX

D_{10}\rtimes C_{16}
% in TeX

G:=Group("D10:C16");
// GroupNames label

G:=SmallGroup(320,225);
// by ID

G=gap.SmallGroup(320,225);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,120,100,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c|a^10=b^2=c^16=1,b*a*b=a^-1,c*a*c^-1=a^3,c*b*c^-1=a^7*b>;
// generators/relations

׿
×
𝔽