Extensions 1→N→G→Q→1 with N=Dic20 and Q=C4

Direct product G=N×Q with N=Dic20 and Q=C4
dρLabelID
C4×Dic20320C4xDic20320,325

Semidirect products G=N:Q with N=Dic20 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic201C4 = D10.D8φ: C4/C1C4 ⊆ Out Dic20808-Dic20:1C4320,241
Dic202C4 = D8⋊F5φ: C4/C1C4 ⊆ Out Dic20808-Dic20:2C4320,1071
Dic203C4 = Dic20⋊C4φ: C4/C1C4 ⊆ Out Dic20808-Dic20:3C4320,1077
Dic204C4 = D5.Q32φ: C4/C1C4 ⊆ Out Dic20808-Dic20:4C4320,246
Dic205C4 = D85F5φ: C4/C1C4 ⊆ Out Dic20808-Dic20:5C4320,1070
Dic206C4 = Q16×F5φ: C4/C1C4 ⊆ Out Dic20808-Dic20:6C4320,1076
Dic207C4 = C40.78D4φ: C4/C2C2 ⊆ Out Dic20320Dic20:7C4320,61
Dic208C4 = D408C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:8C4320,76
Dic209C4 = Dic209C4φ: C4/C2C2 ⊆ Out Dic20320Dic20:9C4320,343
Dic2010C4 = D4010C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:10C4320,344
Dic2011C4 = C10.Q32φ: C4/C2C2 ⊆ Out Dic20320Dic20:11C4320,50
Dic2012C4 = Dic55Q16φ: C4/C2C2 ⊆ Out Dic20320Dic20:12C4320,500
Dic2013C4 = D4013C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:13C4320,522
Dic2014C4 = D4014C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:14C4320,46
Dic2015C4 = Dic2015C4φ: C4/C2C2 ⊆ Out Dic20320Dic20:15C4320,480
Dic2016C4 = D4016C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:16C4320,521
Dic2017C4 = D4017C4φ: trivial image802Dic20:17C4320,327

Non-split extensions G=N.Q with N=Dic20 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic20.1C4 = Dic20.C4φ: C4/C1C4 ⊆ Out Dic201608-Dic20.1C4320,248
Dic20.2C4 = D8.F5φ: C4/C1C4 ⊆ Out Dic201608-Dic20.2C4320,243
Dic20.3C4 = D40.3C4φ: C4/C2C2 ⊆ Out Dic201602Dic20.3C4320,68
Dic20.4C4 = C20.4D8φ: C4/C2C2 ⊆ Out Dic201604-Dic20.4C4320,75
Dic20.5C4 = D40.5C4φ: C4/C2C2 ⊆ Out Dic201604Dic20.5C4320,55
Dic20.6C4 = C40.8D4φ: C4/C2C2 ⊆ Out Dic201604-Dic20.6C4320,54

׿
×
𝔽