Copied to
clipboard

G = D10.D8order 320 = 26·5

2nd non-split extension by D10 of D8 acting via D8/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D82F5, D10.2D8, Dic201C4, Dic5.16SD16, (C5×D8)⋊1C4, C8.1(C2×F5), C40.1(C2×C4), C40⋊C41C2, C51(D82C4), (C4×D5).20D4, C52C8.11D4, C8.F51C2, D83D5.2C2, (C8×D5).9C22, C4.1(C22⋊F5), C20.1(C22⋊C4), C2.6(D20⋊C4), C10.5(D4⋊C4), SmallGroup(320,241)

Series: Derived Chief Lower central Upper central

C1C40 — D10.D8
C1C5C10C20C4×D5C8×D5C40⋊C4 — D10.D8
C5C10C20C40 — D10.D8
C1C2C4C8D8

Generators and relations for D10.D8
 G = < a,b,c,d | a10=b2=1, c8=a5, d2=a-1b, bab=a-1, cac-1=dad-1=a3, cbc-1=a7b, dbd-1=a2b, dcd-1=a4bc7 >

Subgroups: 314 in 58 conjugacy classes, 20 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, Q8, D5, C10, C10, C16, C4⋊C4, C2×C8, D8, SD16, Q16, C4○D4, Dic5, Dic5, C20, F5, D10, C2×C10, C4.Q8, M5(2), C4○D8, C52C8, C40, Dic10, C4×D5, C2×Dic5, C5⋊D4, C5×D4, C2×F5, D82C4, C5⋊C16, C8×D5, Dic20, D4.D5, C5×D8, C4⋊F5, D42D5, C8.F5, C40⋊C4, D83D5, D10.D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, F5, D4⋊C4, C2×F5, D82C4, C22⋊F5, D20⋊C4, D10.D8

Character table of D10.D8

 class 12A2B2C4A4B4C4D4E58A8B8C10A10B10C16A16B16C16D2040A40B
 size 118102104040404410104161620202020888
ρ111111111111111111111111    trivial
ρ211-11111-1111111-1-1-1-1-1-1111    linear of order 2
ρ3111111-11-11111111-1-1-1-1111    linear of order 2
ρ411-1111-1-1-111111-1-11111111    linear of order 2
ρ5111-11-1-i-1i11-1-1111-iii-i111    linear of order 4
ρ611-1-11-1-i1i11-1-11-1-1i-i-ii111    linear of order 4
ρ7111-11-1i-1-i11-1-1111i-i-ii111    linear of order 4
ρ811-1-11-1i1-i11-1-11-1-1-iii-i111    linear of order 4
ρ92202220002-2-2-220000002-2-2    orthogonal lifted from D4
ρ10220-22-20002-22220000002-2-2    orthogonal lifted from D4
ρ112202-2-200020002002-22-2-200    orthogonal lifted from D8
ρ122202-2-20002000200-22-22-200    orthogonal lifted from D8
ρ13220-2-220002000200--2--2-2-2-200    complex lifted from SD16
ρ14220-2-220002000200-2-2--2--2-200    complex lifted from SD16
ρ1544-4040000-1400-1110000-1-1-1    orthogonal lifted from C2×F5
ρ16444040000-1400-1-1-10000-1-1-1    orthogonal lifted from F5
ρ17440040000-1-400-1-550000-111    orthogonal lifted from C22⋊F5
ρ18440040000-1-400-15-50000-111    orthogonal lifted from C22⋊F5
ρ194-4000000040-2-22-2-4000000000    complex lifted from D82C4
ρ204-40000000402-2-2-2-4000000000    complex lifted from D82C4
ρ218800-80000-2000-2000000200    orthogonal lifted from D20⋊C4, Schur index 2
ρ228-80000000-200020000000-1010    symplectic faithful, Schur index 2
ρ238-80000000-20002000000010-10    symplectic faithful, Schur index 2

Smallest permutation representation of D10.D8
On 80 points
Generators in S80
(1 69 27 35 51 9 77 19 43 59)(2 36 78 60 28 10 44 70 52 20)(3 61 45 21 79 11 53 37 29 71)(4 22 54 72 46 12 30 62 80 38)(5 73 31 39 55 13 65 23 47 63)(6 40 66 64 32 14 48 74 56 24)(7 49 33 25 67 15 57 41 17 75)(8 26 58 76 34 16 18 50 68 42)
(1 59)(2 28)(3 71)(4 46)(5 63)(6 32)(7 75)(8 34)(9 51)(10 20)(11 79)(12 38)(13 55)(14 24)(15 67)(16 42)(17 49)(18 68)(19 27)(21 53)(22 72)(23 31)(25 57)(26 76)(29 61)(30 80)(33 41)(35 77)(36 60)(37 45)(39 65)(40 64)(43 69)(44 52)(47 73)(48 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 8 10 16)(3 7)(4 14 12 6)(5 13)(11 15)(17 53 33 79)(18 70 42 52)(19 59 35 69)(20 76 44 58)(21 49 37 75)(22 66 46 64)(23 55 39 65)(24 72 48 54)(25 61 41 71)(26 78 34 60)(27 51 43 77)(28 68 36 50)(29 57 45 67)(30 74 38 56)(31 63 47 73)(32 80 40 62)

G:=sub<Sym(80)| (1,69,27,35,51,9,77,19,43,59)(2,36,78,60,28,10,44,70,52,20)(3,61,45,21,79,11,53,37,29,71)(4,22,54,72,46,12,30,62,80,38)(5,73,31,39,55,13,65,23,47,63)(6,40,66,64,32,14,48,74,56,24)(7,49,33,25,67,15,57,41,17,75)(8,26,58,76,34,16,18,50,68,42), (1,59)(2,28)(3,71)(4,46)(5,63)(6,32)(7,75)(8,34)(9,51)(10,20)(11,79)(12,38)(13,55)(14,24)(15,67)(16,42)(17,49)(18,68)(19,27)(21,53)(22,72)(23,31)(25,57)(26,76)(29,61)(30,80)(33,41)(35,77)(36,60)(37,45)(39,65)(40,64)(43,69)(44,52)(47,73)(48,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,8,10,16)(3,7)(4,14,12,6)(5,13)(11,15)(17,53,33,79)(18,70,42,52)(19,59,35,69)(20,76,44,58)(21,49,37,75)(22,66,46,64)(23,55,39,65)(24,72,48,54)(25,61,41,71)(26,78,34,60)(27,51,43,77)(28,68,36,50)(29,57,45,67)(30,74,38,56)(31,63,47,73)(32,80,40,62)>;

G:=Group( (1,69,27,35,51,9,77,19,43,59)(2,36,78,60,28,10,44,70,52,20)(3,61,45,21,79,11,53,37,29,71)(4,22,54,72,46,12,30,62,80,38)(5,73,31,39,55,13,65,23,47,63)(6,40,66,64,32,14,48,74,56,24)(7,49,33,25,67,15,57,41,17,75)(8,26,58,76,34,16,18,50,68,42), (1,59)(2,28)(3,71)(4,46)(5,63)(6,32)(7,75)(8,34)(9,51)(10,20)(11,79)(12,38)(13,55)(14,24)(15,67)(16,42)(17,49)(18,68)(19,27)(21,53)(22,72)(23,31)(25,57)(26,76)(29,61)(30,80)(33,41)(35,77)(36,60)(37,45)(39,65)(40,64)(43,69)(44,52)(47,73)(48,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,8,10,16)(3,7)(4,14,12,6)(5,13)(11,15)(17,53,33,79)(18,70,42,52)(19,59,35,69)(20,76,44,58)(21,49,37,75)(22,66,46,64)(23,55,39,65)(24,72,48,54)(25,61,41,71)(26,78,34,60)(27,51,43,77)(28,68,36,50)(29,57,45,67)(30,74,38,56)(31,63,47,73)(32,80,40,62) );

G=PermutationGroup([[(1,69,27,35,51,9,77,19,43,59),(2,36,78,60,28,10,44,70,52,20),(3,61,45,21,79,11,53,37,29,71),(4,22,54,72,46,12,30,62,80,38),(5,73,31,39,55,13,65,23,47,63),(6,40,66,64,32,14,48,74,56,24),(7,49,33,25,67,15,57,41,17,75),(8,26,58,76,34,16,18,50,68,42)], [(1,59),(2,28),(3,71),(4,46),(5,63),(6,32),(7,75),(8,34),(9,51),(10,20),(11,79),(12,38),(13,55),(14,24),(15,67),(16,42),(17,49),(18,68),(19,27),(21,53),(22,72),(23,31),(25,57),(26,76),(29,61),(30,80),(33,41),(35,77),(36,60),(37,45),(39,65),(40,64),(43,69),(44,52),(47,73),(48,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,8,10,16),(3,7),(4,14,12,6),(5,13),(11,15),(17,53,33,79),(18,70,42,52),(19,59,35,69),(20,76,44,58),(21,49,37,75),(22,66,46,64),(23,55,39,65),(24,72,48,54),(25,61,41,71),(26,78,34,60),(27,51,43,77),(28,68,36,50),(29,57,45,67),(30,74,38,56),(31,63,47,73),(32,80,40,62)]])

Matrix representation of D10.D8 in GL8(𝔽241)

2400000000
0240000000
0024000000
0002400000
0000002401
0000002400
0000102400
0000012400
,
2400000000
0240000000
00100000
42177010000
0000012400
0000102400
0000002400
0000002401
,
1661102030000
16611382030000
10000000
19111640000
0000002400
0000240000
0000000240
0000024000
,
10000000
0240000000
1661102030000
22020922200000
00000010
00001000
00000001
00000100

G:=sub<GL(8,GF(241))| [240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,240,240,240,240,0,0,0,0,1,0,0,0],[240,0,0,42,0,0,0,0,0,240,0,177,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,240,240,240,0,0,0,0,0,0,0,1],[166,166,1,19,0,0,0,0,11,11,0,1,0,0,0,0,0,38,0,11,0,0,0,0,203,203,0,64,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,240,0,0,0,0,0,0,0,0,0,240,0],[1,0,166,220,0,0,0,0,0,240,11,209,0,0,0,0,0,0,0,222,0,0,0,0,0,0,203,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;

D10.D8 in GAP, Magma, Sage, TeX

D_{10}.D_8
% in TeX

G:=Group("D10.D8");
// GroupNames label

G:=SmallGroup(320,241);
// by ID

G=gap.SmallGroup(320,241);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,387,675,794,80,1684,851,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=1,c^8=a^5,d^2=a^-1*b,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^3,c*b*c^-1=a^7*b,d*b*d^-1=a^2*b,d*c*d^-1=a^4*b*c^7>;
// generators/relations

Export

Character table of D10.D8 in TeX

׿
×
𝔽