metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.152- 1+4, C4⋊C4.188D10, C22⋊Q8.9D5, (Q8×Dic5)⋊12C2, (C2×C20).50C23, (C2×Q8).123D10, C22⋊C4.13D10, C4.Dic10⋊23C2, Dic5⋊Q8⋊13C2, Dic5⋊3Q8⋊24C2, C20.209(C4○D4), C4.72(D4⋊2D5), (C2×C10).169C24, (C22×C4).233D10, Dic5.Q8⋊17C2, C20.48D4.16C2, C4⋊Dic5.311C22, (Q8×C10).104C22, (C2×Dic5).84C23, C23.D10.2C2, C23.116(C22×D5), C22.190(C23×D5), (C22×C20).249C22, (C22×C10).197C23, C5⋊3(C22.35C24), (C4×Dic5).111C22, C10.D4.24C22, C23.D5.114C22, C2.34(D4.10D10), C2.16(Q8.10D10), (C2×Dic10).165C22, C23.21D10.24C2, C10.89(C2×C4○D4), (C5×C22⋊Q8).9C2, C2.45(C2×D4⋊2D5), (C5×C4⋊C4).155C22, (C2×C4).182(C22×D5), (C5×C22⋊C4).24C22, SmallGroup(320,1297)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10.152- 1+4
G = < a,b,c,d,e | a10=b4=1, c2=a5, d2=e2=b2, ab=ba, cac-1=dad-1=a-1, ae=ea, cbc-1=b-1, dbd-1=a5b, be=eb, dcd-1=a5c, ce=ec, ede-1=b2d >
Subgroups: 526 in 192 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, Q8, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C42⋊C2, C4×Q8, C22⋊Q8, C22⋊Q8, C42.C2, C42⋊2C2, C4⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×Q8, C22×C10, C22.35C24, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C22×C20, Q8×C10, C23.D10, Dic5⋊3Q8, Dic5.Q8, C4.Dic10, C4.Dic10, C20.48D4, C23.21D10, Dic5⋊Q8, Q8×Dic5, C5×C22⋊Q8, C10.152- 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2- 1+4, C22×D5, C22.35C24, D4⋊2D5, C23×D5, C2×D4⋊2D5, Q8.10D10, D4.10D10, C10.152- 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 58 13 48)(2 59 14 49)(3 60 15 50)(4 51 16 41)(5 52 17 42)(6 53 18 43)(7 54 19 44)(8 55 20 45)(9 56 11 46)(10 57 12 47)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)(81 126 91 136)(82 127 92 137)(83 128 93 138)(84 129 94 139)(85 130 95 140)(86 121 96 131)(87 122 97 132)(88 123 98 133)(89 124 99 134)(90 125 100 135)(101 141 111 151)(102 142 112 152)(103 143 113 153)(104 144 114 154)(105 145 115 155)(106 146 116 156)(107 147 117 157)(108 148 118 158)(109 149 119 159)(110 150 120 160)
(1 132 6 137)(2 131 7 136)(3 140 8 135)(4 139 9 134)(5 138 10 133)(11 124 16 129)(12 123 17 128)(13 122 18 127)(14 121 19 126)(15 130 20 125)(21 159 26 154)(22 158 27 153)(23 157 28 152)(24 156 29 151)(25 155 30 160)(31 149 36 144)(32 148 37 143)(33 147 38 142)(34 146 39 141)(35 145 40 150)(41 84 46 89)(42 83 47 88)(43 82 48 87)(44 81 49 86)(45 90 50 85)(51 94 56 99)(52 93 57 98)(53 92 58 97)(54 91 59 96)(55 100 60 95)(61 109 66 104)(62 108 67 103)(63 107 68 102)(64 106 69 101)(65 105 70 110)(71 119 76 114)(72 118 77 113)(73 117 78 112)(74 116 79 111)(75 115 80 120)
(1 107 13 117)(2 106 14 116)(3 105 15 115)(4 104 16 114)(5 103 17 113)(6 102 18 112)(7 101 19 111)(8 110 20 120)(9 109 11 119)(10 108 12 118)(21 94 31 84)(22 93 32 83)(23 92 33 82)(24 91 34 81)(25 100 35 90)(26 99 36 89)(27 98 37 88)(28 97 38 87)(29 96 39 86)(30 95 40 85)(41 159 51 149)(42 158 52 148)(43 157 53 147)(44 156 54 146)(45 155 55 145)(46 154 56 144)(47 153 57 143)(48 152 58 142)(49 151 59 141)(50 160 60 150)(61 124 71 134)(62 123 72 133)(63 122 73 132)(64 121 74 131)(65 130 75 140)(66 129 76 139)(67 128 77 138)(68 127 78 137)(69 126 79 136)(70 125 80 135)
(1 53 13 43)(2 54 14 44)(3 55 15 45)(4 56 16 46)(5 57 17 47)(6 58 18 48)(7 59 19 49)(8 60 20 50)(9 51 11 41)(10 52 12 42)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)(81 131 91 121)(82 132 92 122)(83 133 93 123)(84 134 94 124)(85 135 95 125)(86 136 96 126)(87 137 97 127)(88 138 98 128)(89 139 99 129)(90 140 100 130)(101 151 111 141)(102 152 112 142)(103 153 113 143)(104 154 114 144)(105 155 115 145)(106 156 116 146)(107 157 117 147)(108 158 118 148)(109 159 119 149)(110 160 120 150)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,58,13,48)(2,59,14,49)(3,60,15,50)(4,51,16,41)(5,52,17,42)(6,53,18,43)(7,54,19,44)(8,55,20,45)(9,56,11,46)(10,57,12,47)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,126,91,136)(82,127,92,137)(83,128,93,138)(84,129,94,139)(85,130,95,140)(86,121,96,131)(87,122,97,132)(88,123,98,133)(89,124,99,134)(90,125,100,135)(101,141,111,151)(102,142,112,152)(103,143,113,153)(104,144,114,154)(105,145,115,155)(106,146,116,156)(107,147,117,157)(108,148,118,158)(109,149,119,159)(110,150,120,160), (1,132,6,137)(2,131,7,136)(3,140,8,135)(4,139,9,134)(5,138,10,133)(11,124,16,129)(12,123,17,128)(13,122,18,127)(14,121,19,126)(15,130,20,125)(21,159,26,154)(22,158,27,153)(23,157,28,152)(24,156,29,151)(25,155,30,160)(31,149,36,144)(32,148,37,143)(33,147,38,142)(34,146,39,141)(35,145,40,150)(41,84,46,89)(42,83,47,88)(43,82,48,87)(44,81,49,86)(45,90,50,85)(51,94,56,99)(52,93,57,98)(53,92,58,97)(54,91,59,96)(55,100,60,95)(61,109,66,104)(62,108,67,103)(63,107,68,102)(64,106,69,101)(65,105,70,110)(71,119,76,114)(72,118,77,113)(73,117,78,112)(74,116,79,111)(75,115,80,120), (1,107,13,117)(2,106,14,116)(3,105,15,115)(4,104,16,114)(5,103,17,113)(6,102,18,112)(7,101,19,111)(8,110,20,120)(9,109,11,119)(10,108,12,118)(21,94,31,84)(22,93,32,83)(23,92,33,82)(24,91,34,81)(25,100,35,90)(26,99,36,89)(27,98,37,88)(28,97,38,87)(29,96,39,86)(30,95,40,85)(41,159,51,149)(42,158,52,148)(43,157,53,147)(44,156,54,146)(45,155,55,145)(46,154,56,144)(47,153,57,143)(48,152,58,142)(49,151,59,141)(50,160,60,150)(61,124,71,134)(62,123,72,133)(63,122,73,132)(64,121,74,131)(65,130,75,140)(66,129,76,139)(67,128,77,138)(68,127,78,137)(69,126,79,136)(70,125,80,135), (1,53,13,43)(2,54,14,44)(3,55,15,45)(4,56,16,46)(5,57,17,47)(6,58,18,48)(7,59,19,49)(8,60,20,50)(9,51,11,41)(10,52,12,42)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,58,13,48)(2,59,14,49)(3,60,15,50)(4,51,16,41)(5,52,17,42)(6,53,18,43)(7,54,19,44)(8,55,20,45)(9,56,11,46)(10,57,12,47)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,126,91,136)(82,127,92,137)(83,128,93,138)(84,129,94,139)(85,130,95,140)(86,121,96,131)(87,122,97,132)(88,123,98,133)(89,124,99,134)(90,125,100,135)(101,141,111,151)(102,142,112,152)(103,143,113,153)(104,144,114,154)(105,145,115,155)(106,146,116,156)(107,147,117,157)(108,148,118,158)(109,149,119,159)(110,150,120,160), (1,132,6,137)(2,131,7,136)(3,140,8,135)(4,139,9,134)(5,138,10,133)(11,124,16,129)(12,123,17,128)(13,122,18,127)(14,121,19,126)(15,130,20,125)(21,159,26,154)(22,158,27,153)(23,157,28,152)(24,156,29,151)(25,155,30,160)(31,149,36,144)(32,148,37,143)(33,147,38,142)(34,146,39,141)(35,145,40,150)(41,84,46,89)(42,83,47,88)(43,82,48,87)(44,81,49,86)(45,90,50,85)(51,94,56,99)(52,93,57,98)(53,92,58,97)(54,91,59,96)(55,100,60,95)(61,109,66,104)(62,108,67,103)(63,107,68,102)(64,106,69,101)(65,105,70,110)(71,119,76,114)(72,118,77,113)(73,117,78,112)(74,116,79,111)(75,115,80,120), (1,107,13,117)(2,106,14,116)(3,105,15,115)(4,104,16,114)(5,103,17,113)(6,102,18,112)(7,101,19,111)(8,110,20,120)(9,109,11,119)(10,108,12,118)(21,94,31,84)(22,93,32,83)(23,92,33,82)(24,91,34,81)(25,100,35,90)(26,99,36,89)(27,98,37,88)(28,97,38,87)(29,96,39,86)(30,95,40,85)(41,159,51,149)(42,158,52,148)(43,157,53,147)(44,156,54,146)(45,155,55,145)(46,154,56,144)(47,153,57,143)(48,152,58,142)(49,151,59,141)(50,160,60,150)(61,124,71,134)(62,123,72,133)(63,122,73,132)(64,121,74,131)(65,130,75,140)(66,129,76,139)(67,128,77,138)(68,127,78,137)(69,126,79,136)(70,125,80,135), (1,53,13,43)(2,54,14,44)(3,55,15,45)(4,56,16,46)(5,57,17,47)(6,58,18,48)(7,59,19,49)(8,60,20,50)(9,51,11,41)(10,52,12,42)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,58,13,48),(2,59,14,49),(3,60,15,50),(4,51,16,41),(5,52,17,42),(6,53,18,43),(7,54,19,44),(8,55,20,45),(9,56,11,46),(10,57,12,47),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70),(81,126,91,136),(82,127,92,137),(83,128,93,138),(84,129,94,139),(85,130,95,140),(86,121,96,131),(87,122,97,132),(88,123,98,133),(89,124,99,134),(90,125,100,135),(101,141,111,151),(102,142,112,152),(103,143,113,153),(104,144,114,154),(105,145,115,155),(106,146,116,156),(107,147,117,157),(108,148,118,158),(109,149,119,159),(110,150,120,160)], [(1,132,6,137),(2,131,7,136),(3,140,8,135),(4,139,9,134),(5,138,10,133),(11,124,16,129),(12,123,17,128),(13,122,18,127),(14,121,19,126),(15,130,20,125),(21,159,26,154),(22,158,27,153),(23,157,28,152),(24,156,29,151),(25,155,30,160),(31,149,36,144),(32,148,37,143),(33,147,38,142),(34,146,39,141),(35,145,40,150),(41,84,46,89),(42,83,47,88),(43,82,48,87),(44,81,49,86),(45,90,50,85),(51,94,56,99),(52,93,57,98),(53,92,58,97),(54,91,59,96),(55,100,60,95),(61,109,66,104),(62,108,67,103),(63,107,68,102),(64,106,69,101),(65,105,70,110),(71,119,76,114),(72,118,77,113),(73,117,78,112),(74,116,79,111),(75,115,80,120)], [(1,107,13,117),(2,106,14,116),(3,105,15,115),(4,104,16,114),(5,103,17,113),(6,102,18,112),(7,101,19,111),(8,110,20,120),(9,109,11,119),(10,108,12,118),(21,94,31,84),(22,93,32,83),(23,92,33,82),(24,91,34,81),(25,100,35,90),(26,99,36,89),(27,98,37,88),(28,97,38,87),(29,96,39,86),(30,95,40,85),(41,159,51,149),(42,158,52,148),(43,157,53,147),(44,156,54,146),(45,155,55,145),(46,154,56,144),(47,153,57,143),(48,152,58,142),(49,151,59,141),(50,160,60,150),(61,124,71,134),(62,123,72,133),(63,122,73,132),(64,121,74,131),(65,130,75,140),(66,129,76,139),(67,128,77,138),(68,127,78,137),(69,126,79,136),(70,125,80,135)], [(1,53,13,43),(2,54,14,44),(3,55,15,45),(4,56,16,46),(5,57,17,47),(6,58,18,48),(7,59,19,49),(8,60,20,50),(9,51,11,41),(10,52,12,42),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70),(81,131,91,121),(82,132,92,122),(83,133,93,123),(84,134,94,124),(85,135,95,125),(86,136,96,126),(87,137,97,127),(88,138,98,128),(89,139,99,129),(90,140,100,130),(101,151,111,141),(102,152,112,142),(103,153,113,143),(104,154,114,144),(105,155,115,145),(106,156,116,146),(107,157,117,147),(108,158,118,148),(109,159,119,149),(110,160,120,150)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 4J | 4K | 4L | ··· | 4Q | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20P |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D10 | 2- 1+4 | D4⋊2D5 | Q8.10D10 | D4.10D10 |
kernel | C10.152- 1+4 | C23.D10 | Dic5⋊3Q8 | Dic5.Q8 | C4.Dic10 | C20.48D4 | C23.21D10 | Dic5⋊Q8 | Q8×Dic5 | C5×C22⋊Q8 | C22⋊Q8 | C20 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×Q8 | C10 | C4 | C2 | C2 |
# reps | 1 | 4 | 1 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 6 | 2 | 2 | 2 | 4 | 4 | 4 |
Matrix representation of C10.152- 1+4 ►in GL8(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 27 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 34 | 27 |
0 | 0 | 0 | 0 | 0 | 0 | 27 | 7 |
32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
32 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 39 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 34 | 27 |
0 | 0 | 0 | 0 | 0 | 0 | 27 | 7 |
0 | 0 | 0 | 0 | 7 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 34 | 0 | 0 |
32 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
32 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 39 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 14 |
0 | 0 | 0 | 0 | 0 | 0 | 14 | 34 |
G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,26,27,0,0,0,0,0,0,35,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,7,14,0,0,0,0,0,0,14,34,0,0,0,0,0,0,0,0,34,27,0,0,0,0,0,0,27,7],[32,32,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,2,7,0,0,0,0,0,0,23,39,0,0,0,0,0,0,0,0,0,0,7,14,0,0,0,0,0,0,14,34,0,0,0,0,34,27,0,0,0,0,0,0,27,7,0,0],[32,32,0,0,0,0,0,0,18,9,0,0,0,0,0,0,0,0,39,34,0,0,0,0,0,0,18,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,7,14,0,0,0,0,0,0,14,34,0,0,0,0,0,0,0,0,7,14,0,0,0,0,0,0,14,34] >;
C10.152- 1+4 in GAP, Magma, Sage, TeX
C_{10}._{15}2_-^{1+4}
% in TeX
G:=Group("C10.15ES-(2,2)");
// GroupNames label
G:=SmallGroup(320,1297);
// by ID
G=gap.SmallGroup(320,1297);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,120,219,268,675,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=a^5,d^2=e^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations