Copied to
clipboard

G = D109M4(2)  order 320 = 26·5

3rd semidirect product of D10 and M4(2) acting via M4(2)/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D109M4(2), D10⋊C85C2, (C22×C4).16F5, C23.42(C2×F5), (C22×C20).20C4, C51(C24.4C4), (C23×D5).15C4, Dic5.105(C2×D4), (C2×Dic5).258D4, C10.21(C2×M4(2)), C22.84(C22×F5), C2.15(D5⋊M4(2)), C22.24(C22⋊F5), Dic5.41(C22⋊C4), (C2×Dic5).346C23, (C22×Dic5).274C22, (C2×C5⋊C8)⋊1C22, (C2×C4×D5).34C4, C2.8(C2×C22⋊F5), C10.5(C2×C22⋊C4), (C2×C4).109(C2×F5), (D5×C22×C4).22C2, (C2×C22.F5)⋊3C2, (C2×C20).108(C2×C4), (C2×C4×D5).364C22, (C22×C10).62(C2×C4), (C2×C10).62(C22×C4), (C2×C10).49(C22⋊C4), (C2×Dic5).184(C2×C4), (C22×D5).125(C2×C4), SmallGroup(320,1093)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D109M4(2)
C1C5C10Dic5C2×Dic5C2×C5⋊C8D10⋊C8 — D109M4(2)
C5C2×C10 — D109M4(2)
C1C22C22×C4

Generators and relations for D109M4(2)
 G = < a,b,c,d | a10=b2=c8=d2=1, bab=a-1, cac-1=a3, ad=da, cbc-1=a7b, bd=db, dcd=c5 >

Subgroups: 762 in 190 conjugacy classes, 56 normal (16 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C23, C23, D5, C10, C10, C10, C2×C8, M4(2), C22×C4, C22×C4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C22⋊C8, C2×M4(2), C23×C4, C5⋊C8, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C24.4C4, C2×C5⋊C8, C22.F5, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×C20, C23×D5, D10⋊C8, C2×C22.F5, D5×C22×C4, D109M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, M4(2), C22×C4, C2×D4, F5, C2×C22⋊C4, C2×M4(2), C2×F5, C24.4C4, C22⋊F5, C22×F5, D5⋊M4(2), C2×C22⋊F5, D109M4(2)

Smallest permutation representation of D109M4(2)
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(12 20)(13 19)(14 18)(15 17)(21 26)(22 25)(23 24)(27 30)(28 29)(31 32)(33 40)(34 39)(35 38)(36 37)(41 50)(42 49)(43 48)(44 47)(45 46)(52 60)(53 59)(54 58)(55 57)(61 63)(64 70)(65 69)(66 68)(71 75)(72 74)(76 80)(77 79)
(1 76 41 70 24 19 32 54)(2 73 50 63 25 16 31 57)(3 80 49 66 26 13 40 60)(4 77 48 69 27 20 39 53)(5 74 47 62 28 17 38 56)(6 71 46 65 29 14 37 59)(7 78 45 68 30 11 36 52)(8 75 44 61 21 18 35 55)(9 72 43 64 22 15 34 58)(10 79 42 67 23 12 33 51)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 21)(9 22)(10 23)(31 50)(32 41)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 49)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(12,20)(13,19)(14,18)(15,17)(21,26)(22,25)(23,24)(27,30)(28,29)(31,32)(33,40)(34,39)(35,38)(36,37)(41,50)(42,49)(43,48)(44,47)(45,46)(52,60)(53,59)(54,58)(55,57)(61,63)(64,70)(65,69)(66,68)(71,75)(72,74)(76,80)(77,79), (1,76,41,70,24,19,32,54)(2,73,50,63,25,16,31,57)(3,80,49,66,26,13,40,60)(4,77,48,69,27,20,39,53)(5,74,47,62,28,17,38,56)(6,71,46,65,29,14,37,59)(7,78,45,68,30,11,36,52)(8,75,44,61,21,18,35,55)(9,72,43,64,22,15,34,58)(10,79,42,67,23,12,33,51), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,21)(9,22)(10,23)(31,50)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(12,20)(13,19)(14,18)(15,17)(21,26)(22,25)(23,24)(27,30)(28,29)(31,32)(33,40)(34,39)(35,38)(36,37)(41,50)(42,49)(43,48)(44,47)(45,46)(52,60)(53,59)(54,58)(55,57)(61,63)(64,70)(65,69)(66,68)(71,75)(72,74)(76,80)(77,79), (1,76,41,70,24,19,32,54)(2,73,50,63,25,16,31,57)(3,80,49,66,26,13,40,60)(4,77,48,69,27,20,39,53)(5,74,47,62,28,17,38,56)(6,71,46,65,29,14,37,59)(7,78,45,68,30,11,36,52)(8,75,44,61,21,18,35,55)(9,72,43,64,22,15,34,58)(10,79,42,67,23,12,33,51), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,21)(9,22)(10,23)(31,50)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(12,20),(13,19),(14,18),(15,17),(21,26),(22,25),(23,24),(27,30),(28,29),(31,32),(33,40),(34,39),(35,38),(36,37),(41,50),(42,49),(43,48),(44,47),(45,46),(52,60),(53,59),(54,58),(55,57),(61,63),(64,70),(65,69),(66,68),(71,75),(72,74),(76,80),(77,79)], [(1,76,41,70,24,19,32,54),(2,73,50,63,25,16,31,57),(3,80,49,66,26,13,40,60),(4,77,48,69,27,20,39,53),(5,74,47,62,28,17,38,56),(6,71,46,65,29,14,37,59),(7,78,45,68,30,11,36,52),(8,75,44,61,21,18,35,55),(9,72,43,64,22,15,34,58),(10,79,42,67,23,12,33,51)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,21),(9,22),(10,23),(31,50),(32,41),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,49)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J 5 8A···8H10A···10G20A···20H
order1222222222444444444458···810···1020···20
size11112210101010222255551010420···204···44···4

44 irreducible representations

dim11111112244444
type+++++++++
imageC1C2C2C2C4C4C4D4M4(2)F5C2×F5C2×F5C22⋊F5D5⋊M4(2)
kernelD109M4(2)D10⋊C8C2×C22.F5D5×C22×C4C2×C4×D5C22×C20C23×D5C2×Dic5D10C22×C4C2×C4C23C22C2
# reps14214224812148

Matrix representation of D109M4(2) in GL6(𝔽41)

4000000
0400000
0000040
001111
0040000
0004000
,
4000000
3310000
0000040
0000400
0004000
0040000
,
3320000
3480000
00612111
0040302935
004051110
00653635
,
100000
8400000
001000
000100
000010
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,40,0,0,0,0,1,0,40,0,0,0,1,0,0,0,0,40,1,0,0],[40,33,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40,0,0,0],[33,34,0,0,0,0,2,8,0,0,0,0,0,0,6,40,40,6,0,0,12,30,5,5,0,0,11,29,11,36,0,0,1,35,10,35],[1,8,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

D109M4(2) in GAP, Magma, Sage, TeX

D_{10}\rtimes_9M_4(2)
% in TeX

G:=Group("D10:9M4(2)");
// GroupNames label

G:=SmallGroup(320,1093);
// by ID

G=gap.SmallGroup(320,1093);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,253,232,758,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=a^3,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽