Copied to
clipboard

G = C28.A4order 336 = 24·3·7

The non-split extension by C28 of A4 acting via A4/C22=C3

non-abelian, soluble

Aliases: C28.A4, C4.(C7⋊A4), C72(C4.A4), C14.A43C2, C14.6(C2×A4), (C7×Q8).6C6, C4○D4⋊(C7⋊C3), Q8.(C2×C7⋊C3), C2.3(C2×C7⋊A4), (C7×C4○D4)⋊3C3, SmallGroup(336,173)

Series: Derived Chief Lower central Upper central

C1C2C7×Q8 — C28.A4
C1C2C14C7×Q8C14.A4 — C28.A4
C7×Q8 — C28.A4
C1C4

Generators and relations for C28.A4
 G = < a,b,c,d | a28=d3=1, b2=c2=a14, ab=ba, ac=ca, dad-1=a25, cbc-1=a14b, dbd-1=a14bc, dcd-1=b >

6C2
28C3
3C4
3C22
28C6
6C14
4C7⋊C3
3D4
3C2×C4
28C12
3C2×C14
3C28
4C2×C7⋊C3
7SL2(𝔽3)
3C2×C28
3C7×D4
4C4×C7⋊C3
7C4.A4

Smallest permutation representation of C28.A4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 31 15 45)(2 32 16 46)(3 33 17 47)(4 34 18 48)(5 35 19 49)(6 36 20 50)(7 37 21 51)(8 38 22 52)(9 39 23 53)(10 40 24 54)(11 41 25 55)(12 42 26 56)(13 43 27 29)(14 44 28 30)(57 111 71 97)(58 112 72 98)(59 85 73 99)(60 86 74 100)(61 87 75 101)(62 88 76 102)(63 89 77 103)(64 90 78 104)(65 91 79 105)(66 92 80 106)(67 93 81 107)(68 94 82 108)(69 95 83 109)(70 96 84 110)
(1 65 15 79)(2 66 16 80)(3 67 17 81)(4 68 18 82)(5 69 19 83)(6 70 20 84)(7 71 21 57)(8 72 22 58)(9 73 23 59)(10 74 24 60)(11 75 25 61)(12 76 26 62)(13 77 27 63)(14 78 28 64)(29 103 43 89)(30 104 44 90)(31 105 45 91)(32 106 46 92)(33 107 47 93)(34 108 48 94)(35 109 49 95)(36 110 50 96)(37 111 51 97)(38 112 52 98)(39 85 53 99)(40 86 54 100)(41 87 55 101)(42 88 56 102)
(2 10 26)(3 19 23)(4 28 20)(5 9 17)(6 18 14)(7 27 11)(12 16 24)(13 25 21)(29 75 97)(30 84 94)(31 65 91)(32 74 88)(33 83 85)(34 64 110)(35 73 107)(36 82 104)(37 63 101)(38 72 98)(39 81 95)(40 62 92)(41 71 89)(42 80 86)(43 61 111)(44 70 108)(45 79 105)(46 60 102)(47 69 99)(48 78 96)(49 59 93)(50 68 90)(51 77 87)(52 58 112)(53 67 109)(54 76 106)(55 57 103)(56 66 100)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,31,15,45)(2,32,16,46)(3,33,17,47)(4,34,18,48)(5,35,19,49)(6,36,20,50)(7,37,21,51)(8,38,22,52)(9,39,23,53)(10,40,24,54)(11,41,25,55)(12,42,26,56)(13,43,27,29)(14,44,28,30)(57,111,71,97)(58,112,72,98)(59,85,73,99)(60,86,74,100)(61,87,75,101)(62,88,76,102)(63,89,77,103)(64,90,78,104)(65,91,79,105)(66,92,80,106)(67,93,81,107)(68,94,82,108)(69,95,83,109)(70,96,84,110), (1,65,15,79)(2,66,16,80)(3,67,17,81)(4,68,18,82)(5,69,19,83)(6,70,20,84)(7,71,21,57)(8,72,22,58)(9,73,23,59)(10,74,24,60)(11,75,25,61)(12,76,26,62)(13,77,27,63)(14,78,28,64)(29,103,43,89)(30,104,44,90)(31,105,45,91)(32,106,46,92)(33,107,47,93)(34,108,48,94)(35,109,49,95)(36,110,50,96)(37,111,51,97)(38,112,52,98)(39,85,53,99)(40,86,54,100)(41,87,55,101)(42,88,56,102), (2,10,26)(3,19,23)(4,28,20)(5,9,17)(6,18,14)(7,27,11)(12,16,24)(13,25,21)(29,75,97)(30,84,94)(31,65,91)(32,74,88)(33,83,85)(34,64,110)(35,73,107)(36,82,104)(37,63,101)(38,72,98)(39,81,95)(40,62,92)(41,71,89)(42,80,86)(43,61,111)(44,70,108)(45,79,105)(46,60,102)(47,69,99)(48,78,96)(49,59,93)(50,68,90)(51,77,87)(52,58,112)(53,67,109)(54,76,106)(55,57,103)(56,66,100)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,31,15,45)(2,32,16,46)(3,33,17,47)(4,34,18,48)(5,35,19,49)(6,36,20,50)(7,37,21,51)(8,38,22,52)(9,39,23,53)(10,40,24,54)(11,41,25,55)(12,42,26,56)(13,43,27,29)(14,44,28,30)(57,111,71,97)(58,112,72,98)(59,85,73,99)(60,86,74,100)(61,87,75,101)(62,88,76,102)(63,89,77,103)(64,90,78,104)(65,91,79,105)(66,92,80,106)(67,93,81,107)(68,94,82,108)(69,95,83,109)(70,96,84,110), (1,65,15,79)(2,66,16,80)(3,67,17,81)(4,68,18,82)(5,69,19,83)(6,70,20,84)(7,71,21,57)(8,72,22,58)(9,73,23,59)(10,74,24,60)(11,75,25,61)(12,76,26,62)(13,77,27,63)(14,78,28,64)(29,103,43,89)(30,104,44,90)(31,105,45,91)(32,106,46,92)(33,107,47,93)(34,108,48,94)(35,109,49,95)(36,110,50,96)(37,111,51,97)(38,112,52,98)(39,85,53,99)(40,86,54,100)(41,87,55,101)(42,88,56,102), (2,10,26)(3,19,23)(4,28,20)(5,9,17)(6,18,14)(7,27,11)(12,16,24)(13,25,21)(29,75,97)(30,84,94)(31,65,91)(32,74,88)(33,83,85)(34,64,110)(35,73,107)(36,82,104)(37,63,101)(38,72,98)(39,81,95)(40,62,92)(41,71,89)(42,80,86)(43,61,111)(44,70,108)(45,79,105)(46,60,102)(47,69,99)(48,78,96)(49,59,93)(50,68,90)(51,77,87)(52,58,112)(53,67,109)(54,76,106)(55,57,103)(56,66,100) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,31,15,45),(2,32,16,46),(3,33,17,47),(4,34,18,48),(5,35,19,49),(6,36,20,50),(7,37,21,51),(8,38,22,52),(9,39,23,53),(10,40,24,54),(11,41,25,55),(12,42,26,56),(13,43,27,29),(14,44,28,30),(57,111,71,97),(58,112,72,98),(59,85,73,99),(60,86,74,100),(61,87,75,101),(62,88,76,102),(63,89,77,103),(64,90,78,104),(65,91,79,105),(66,92,80,106),(67,93,81,107),(68,94,82,108),(69,95,83,109),(70,96,84,110)], [(1,65,15,79),(2,66,16,80),(3,67,17,81),(4,68,18,82),(5,69,19,83),(6,70,20,84),(7,71,21,57),(8,72,22,58),(9,73,23,59),(10,74,24,60),(11,75,25,61),(12,76,26,62),(13,77,27,63),(14,78,28,64),(29,103,43,89),(30,104,44,90),(31,105,45,91),(32,106,46,92),(33,107,47,93),(34,108,48,94),(35,109,49,95),(36,110,50,96),(37,111,51,97),(38,112,52,98),(39,85,53,99),(40,86,54,100),(41,87,55,101),(42,88,56,102)], [(2,10,26),(3,19,23),(4,28,20),(5,9,17),(6,18,14),(7,27,11),(12,16,24),(13,25,21),(29,75,97),(30,84,94),(31,65,91),(32,74,88),(33,83,85),(34,64,110),(35,73,107),(36,82,104),(37,63,101),(38,72,98),(39,81,95),(40,62,92),(41,71,89),(42,80,86),(43,61,111),(44,70,108),(45,79,105),(46,60,102),(47,69,99),(48,78,96),(49,59,93),(50,68,90),(51,77,87),(52,58,112),(53,67,109),(54,76,106),(55,57,103),(56,66,100)]])

34 conjugacy classes

class 1 2A2B3A3B4A4B4C6A6B7A7B12A12B12C12D14A14B14C···14H28A28B28C28D28E···28J
order12233444667712121212141414···142828282828···28
size116282811628283328282828336···633336···6

34 irreducible representations

dim111123333336
type++++
imageC1C2C3C6C4.A4A4C7⋊C3C2×A4C2×C7⋊C3C7⋊A4C2×C7⋊A4C28.A4
kernelC28.A4C14.A4C7×C4○D4C7×Q8C7C28C4○D4C14Q8C4C2C1
# reps112261212664

Matrix representation of C28.A4 in GL5(𝔽337)

1890000
0189000
00001
001213212
00212336336
,
128129000
129209000
00100
00010
00001
,
0336000
10000
00100
00010
00001
,
10000
209208000
00100
00212336336
00010

G:=sub<GL(5,GF(337))| [189,0,0,0,0,0,189,0,0,0,0,0,0,1,212,0,0,0,213,336,0,0,1,212,336],[128,129,0,0,0,129,209,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,336,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,209,0,0,0,0,208,0,0,0,0,0,1,212,0,0,0,0,336,1,0,0,0,336,0] >;

C28.A4 in GAP, Magma, Sage, TeX

C_{28}.A_4
% in TeX

G:=Group("C28.A4");
// GroupNames label

G:=SmallGroup(336,173);
// by ID

G=gap.SmallGroup(336,173);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-7,-2,1008,116,518,225,735,357,730]);
// Polycyclic

G:=Group<a,b,c,d|a^28=d^3=1,b^2=c^2=a^14,a*b=b*a,a*c=c*a,d*a*d^-1=a^25,c*b*c^-1=a^14*b,d*b*d^-1=a^14*b*c,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C28.A4 in TeX

׿
×
𝔽