Copied to
clipboard

G = C7×CSU2(𝔽3)  order 336 = 24·3·7

Direct product of C7 and CSU2(𝔽3)

direct product, non-abelian, soluble

Aliases: C7×CSU2(𝔽3), C14.4S4, SL2(𝔽3).C14, Q8.(S3×C7), C2.2(C7×S4), (C7×Q8).2S3, (C7×SL2(𝔽3)).2C2, SmallGroup(336,115)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — C7×CSU2(𝔽3)
C1C2Q8SL2(𝔽3)C7×SL2(𝔽3) — C7×CSU2(𝔽3)
SL2(𝔽3) — C7×CSU2(𝔽3)
C1C14

Generators and relations for C7×CSU2(𝔽3)
 G = < a,b,c,d,e | a7=b4=d3=1, c2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ece-1=b-1, dbd-1=bc, ebe-1=b2c, dcd-1=b, ede-1=d-1 >

4C3
3C4
6C4
4C6
4C21
3Q8
3C8
4Dic3
3C28
6C28
4C42
3Q16
3C7×Q8
3C56
4C7×Dic3
3C7×Q16

Smallest permutation representation of C7×CSU2(𝔽3)
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 50 77 59)(2 51 71 60)(3 52 72 61)(4 53 73 62)(5 54 74 63)(6 55 75 57)(7 56 76 58)(8 29 39 21)(9 30 40 15)(10 31 41 16)(11 32 42 17)(12 33 36 18)(13 34 37 19)(14 35 38 20)(22 99 108 43)(23 100 109 44)(24 101 110 45)(25 102 111 46)(26 103 112 47)(27 104 106 48)(28 105 107 49)(64 84 96 86)(65 78 97 87)(66 79 98 88)(67 80 92 89)(68 81 93 90)(69 82 94 91)(70 83 95 85)
(1 85 77 83)(2 86 71 84)(3 87 72 78)(4 88 73 79)(5 89 74 80)(6 90 75 81)(7 91 76 82)(8 27 39 106)(9 28 40 107)(10 22 41 108)(11 23 42 109)(12 24 36 110)(13 25 37 111)(14 26 38 112)(15 105 30 49)(16 99 31 43)(17 100 32 44)(18 101 33 45)(19 102 34 46)(20 103 35 47)(21 104 29 48)(50 95 59 70)(51 96 60 64)(52 97 61 65)(53 98 62 66)(54 92 63 67)(55 93 57 68)(56 94 58 69)
(15 107 105)(16 108 99)(17 109 100)(18 110 101)(19 111 102)(20 112 103)(21 106 104)(22 43 31)(23 44 32)(24 45 33)(25 46 34)(26 47 35)(27 48 29)(28 49 30)(50 85 95)(51 86 96)(52 87 97)(53 88 98)(54 89 92)(55 90 93)(56 91 94)(57 81 68)(58 82 69)(59 83 70)(60 84 64)(61 78 65)(62 79 66)(63 80 67)
(1 39 77 8)(2 40 71 9)(3 41 72 10)(4 42 73 11)(5 36 74 12)(6 37 75 13)(7 38 76 14)(15 86 30 84)(16 87 31 78)(17 88 32 79)(18 89 33 80)(19 90 34 81)(20 91 35 82)(21 85 29 83)(22 61 108 52)(23 62 109 53)(24 63 110 54)(25 57 111 55)(26 58 112 56)(27 59 106 50)(28 60 107 51)(43 65 99 97)(44 66 100 98)(45 67 101 92)(46 68 102 93)(47 69 103 94)(48 70 104 95)(49 64 105 96)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,50,77,59)(2,51,71,60)(3,52,72,61)(4,53,73,62)(5,54,74,63)(6,55,75,57)(7,56,76,58)(8,29,39,21)(9,30,40,15)(10,31,41,16)(11,32,42,17)(12,33,36,18)(13,34,37,19)(14,35,38,20)(22,99,108,43)(23,100,109,44)(24,101,110,45)(25,102,111,46)(26,103,112,47)(27,104,106,48)(28,105,107,49)(64,84,96,86)(65,78,97,87)(66,79,98,88)(67,80,92,89)(68,81,93,90)(69,82,94,91)(70,83,95,85), (1,85,77,83)(2,86,71,84)(3,87,72,78)(4,88,73,79)(5,89,74,80)(6,90,75,81)(7,91,76,82)(8,27,39,106)(9,28,40,107)(10,22,41,108)(11,23,42,109)(12,24,36,110)(13,25,37,111)(14,26,38,112)(15,105,30,49)(16,99,31,43)(17,100,32,44)(18,101,33,45)(19,102,34,46)(20,103,35,47)(21,104,29,48)(50,95,59,70)(51,96,60,64)(52,97,61,65)(53,98,62,66)(54,92,63,67)(55,93,57,68)(56,94,58,69), (15,107,105)(16,108,99)(17,109,100)(18,110,101)(19,111,102)(20,112,103)(21,106,104)(22,43,31)(23,44,32)(24,45,33)(25,46,34)(26,47,35)(27,48,29)(28,49,30)(50,85,95)(51,86,96)(52,87,97)(53,88,98)(54,89,92)(55,90,93)(56,91,94)(57,81,68)(58,82,69)(59,83,70)(60,84,64)(61,78,65)(62,79,66)(63,80,67), (1,39,77,8)(2,40,71,9)(3,41,72,10)(4,42,73,11)(5,36,74,12)(6,37,75,13)(7,38,76,14)(15,86,30,84)(16,87,31,78)(17,88,32,79)(18,89,33,80)(19,90,34,81)(20,91,35,82)(21,85,29,83)(22,61,108,52)(23,62,109,53)(24,63,110,54)(25,57,111,55)(26,58,112,56)(27,59,106,50)(28,60,107,51)(43,65,99,97)(44,66,100,98)(45,67,101,92)(46,68,102,93)(47,69,103,94)(48,70,104,95)(49,64,105,96)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,50,77,59)(2,51,71,60)(3,52,72,61)(4,53,73,62)(5,54,74,63)(6,55,75,57)(7,56,76,58)(8,29,39,21)(9,30,40,15)(10,31,41,16)(11,32,42,17)(12,33,36,18)(13,34,37,19)(14,35,38,20)(22,99,108,43)(23,100,109,44)(24,101,110,45)(25,102,111,46)(26,103,112,47)(27,104,106,48)(28,105,107,49)(64,84,96,86)(65,78,97,87)(66,79,98,88)(67,80,92,89)(68,81,93,90)(69,82,94,91)(70,83,95,85), (1,85,77,83)(2,86,71,84)(3,87,72,78)(4,88,73,79)(5,89,74,80)(6,90,75,81)(7,91,76,82)(8,27,39,106)(9,28,40,107)(10,22,41,108)(11,23,42,109)(12,24,36,110)(13,25,37,111)(14,26,38,112)(15,105,30,49)(16,99,31,43)(17,100,32,44)(18,101,33,45)(19,102,34,46)(20,103,35,47)(21,104,29,48)(50,95,59,70)(51,96,60,64)(52,97,61,65)(53,98,62,66)(54,92,63,67)(55,93,57,68)(56,94,58,69), (15,107,105)(16,108,99)(17,109,100)(18,110,101)(19,111,102)(20,112,103)(21,106,104)(22,43,31)(23,44,32)(24,45,33)(25,46,34)(26,47,35)(27,48,29)(28,49,30)(50,85,95)(51,86,96)(52,87,97)(53,88,98)(54,89,92)(55,90,93)(56,91,94)(57,81,68)(58,82,69)(59,83,70)(60,84,64)(61,78,65)(62,79,66)(63,80,67), (1,39,77,8)(2,40,71,9)(3,41,72,10)(4,42,73,11)(5,36,74,12)(6,37,75,13)(7,38,76,14)(15,86,30,84)(16,87,31,78)(17,88,32,79)(18,89,33,80)(19,90,34,81)(20,91,35,82)(21,85,29,83)(22,61,108,52)(23,62,109,53)(24,63,110,54)(25,57,111,55)(26,58,112,56)(27,59,106,50)(28,60,107,51)(43,65,99,97)(44,66,100,98)(45,67,101,92)(46,68,102,93)(47,69,103,94)(48,70,104,95)(49,64,105,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,50,77,59),(2,51,71,60),(3,52,72,61),(4,53,73,62),(5,54,74,63),(6,55,75,57),(7,56,76,58),(8,29,39,21),(9,30,40,15),(10,31,41,16),(11,32,42,17),(12,33,36,18),(13,34,37,19),(14,35,38,20),(22,99,108,43),(23,100,109,44),(24,101,110,45),(25,102,111,46),(26,103,112,47),(27,104,106,48),(28,105,107,49),(64,84,96,86),(65,78,97,87),(66,79,98,88),(67,80,92,89),(68,81,93,90),(69,82,94,91),(70,83,95,85)], [(1,85,77,83),(2,86,71,84),(3,87,72,78),(4,88,73,79),(5,89,74,80),(6,90,75,81),(7,91,76,82),(8,27,39,106),(9,28,40,107),(10,22,41,108),(11,23,42,109),(12,24,36,110),(13,25,37,111),(14,26,38,112),(15,105,30,49),(16,99,31,43),(17,100,32,44),(18,101,33,45),(19,102,34,46),(20,103,35,47),(21,104,29,48),(50,95,59,70),(51,96,60,64),(52,97,61,65),(53,98,62,66),(54,92,63,67),(55,93,57,68),(56,94,58,69)], [(15,107,105),(16,108,99),(17,109,100),(18,110,101),(19,111,102),(20,112,103),(21,106,104),(22,43,31),(23,44,32),(24,45,33),(25,46,34),(26,47,35),(27,48,29),(28,49,30),(50,85,95),(51,86,96),(52,87,97),(53,88,98),(54,89,92),(55,90,93),(56,91,94),(57,81,68),(58,82,69),(59,83,70),(60,84,64),(61,78,65),(62,79,66),(63,80,67)], [(1,39,77,8),(2,40,71,9),(3,41,72,10),(4,42,73,11),(5,36,74,12),(6,37,75,13),(7,38,76,14),(15,86,30,84),(16,87,31,78),(17,88,32,79),(18,89,33,80),(19,90,34,81),(20,91,35,82),(21,85,29,83),(22,61,108,52),(23,62,109,53),(24,63,110,54),(25,57,111,55),(26,58,112,56),(27,59,106,50),(28,60,107,51),(43,65,99,97),(44,66,100,98),(45,67,101,92),(46,68,102,93),(47,69,103,94),(48,70,104,95),(49,64,105,96)]])

56 conjugacy classes

class 1  2  3 4A4B 6 7A···7F8A8B14A···14F21A···21F28A···28F28G···28L42A···42F56A···56L
order1234467···78814···1421···2128···2828···2842···4256···56
size11861281···1661···18···86···612···128···86···6

56 irreducible representations

dim111122223344
type+++-+-
imageC1C2C7C14S3S3×C7CSU2(𝔽3)C7×CSU2(𝔽3)S4C7×S4CSU2(𝔽3)C7×CSU2(𝔽3)
kernelC7×CSU2(𝔽3)C7×SL2(𝔽3)CSU2(𝔽3)SL2(𝔽3)C7×Q8Q8C7C1C14C2C7C1
# reps11661621221216

Matrix representation of C7×CSU2(𝔽3) in GL2(𝔽337) generated by

1750
0175
,
4938
327288
,
326287
29911
,
336336
10
,
106133
27231
G:=sub<GL(2,GF(337))| [175,0,0,175],[49,327,38,288],[326,299,287,11],[336,1,336,0],[106,27,133,231] >;

C7×CSU2(𝔽3) in GAP, Magma, Sage, TeX

C_7\times {\rm CSU}_2({\mathbb F}_3)
% in TeX

G:=Group("C7xCSU(2,3)");
// GroupNames label

G:=SmallGroup(336,115);
// by ID

G=gap.SmallGroup(336,115);
# by ID

G:=PCGroup([6,-2,-7,-3,-2,2,-2,1008,506,2019,447,117,1264,286,202,88]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=d^3=1,c^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*c*e^-1=b^-1,d*b*d^-1=b*c,e*b*e^-1=b^2*c,d*c*d^-1=b,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C7×CSU2(𝔽3) in TeX

׿
×
𝔽