Copied to
clipboard

G = C7×SL2(𝔽3)  order 168 = 23·3·7

Direct product of C7 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: C7×SL2(𝔽3), Q8⋊C21, C14.2A4, C2.(C7×A4), (C7×Q8)⋊1C3, SmallGroup(168,22)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C7×SL2(𝔽3)
C1C2Q8C7×Q8 — C7×SL2(𝔽3)
Q8 — C7×SL2(𝔽3)
C1C14

Generators and relations for C7×SL2(𝔽3)
 G = < a,b,c,d | a7=b4=d3=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=c, dcd-1=bc >

4C3
3C4
4C6
4C21
3C28
4C42

Smallest permutation representation of C7×SL2(𝔽3)
On 56 points
Generators in S56
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 8 39 48)(2 9 40 49)(3 10 41 43)(4 11 42 44)(5 12 36 45)(6 13 37 46)(7 14 38 47)(15 51 30 28)(16 52 31 22)(17 53 32 23)(18 54 33 24)(19 55 34 25)(20 56 35 26)(21 50 29 27)
(1 21 39 29)(2 15 40 30)(3 16 41 31)(4 17 42 32)(5 18 36 33)(6 19 37 34)(7 20 38 35)(8 27 48 50)(9 28 49 51)(10 22 43 52)(11 23 44 53)(12 24 45 54)(13 25 46 55)(14 26 47 56)
(8 27 21)(9 28 15)(10 22 16)(11 23 17)(12 24 18)(13 25 19)(14 26 20)(29 48 50)(30 49 51)(31 43 52)(32 44 53)(33 45 54)(34 46 55)(35 47 56)

G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,8,39,48)(2,9,40,49)(3,10,41,43)(4,11,42,44)(5,12,36,45)(6,13,37,46)(7,14,38,47)(15,51,30,28)(16,52,31,22)(17,53,32,23)(18,54,33,24)(19,55,34,25)(20,56,35,26)(21,50,29,27), (1,21,39,29)(2,15,40,30)(3,16,41,31)(4,17,42,32)(5,18,36,33)(6,19,37,34)(7,20,38,35)(8,27,48,50)(9,28,49,51)(10,22,43,52)(11,23,44,53)(12,24,45,54)(13,25,46,55)(14,26,47,56), (8,27,21)(9,28,15)(10,22,16)(11,23,17)(12,24,18)(13,25,19)(14,26,20)(29,48,50)(30,49,51)(31,43,52)(32,44,53)(33,45,54)(34,46,55)(35,47,56)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,8,39,48)(2,9,40,49)(3,10,41,43)(4,11,42,44)(5,12,36,45)(6,13,37,46)(7,14,38,47)(15,51,30,28)(16,52,31,22)(17,53,32,23)(18,54,33,24)(19,55,34,25)(20,56,35,26)(21,50,29,27), (1,21,39,29)(2,15,40,30)(3,16,41,31)(4,17,42,32)(5,18,36,33)(6,19,37,34)(7,20,38,35)(8,27,48,50)(9,28,49,51)(10,22,43,52)(11,23,44,53)(12,24,45,54)(13,25,46,55)(14,26,47,56), (8,27,21)(9,28,15)(10,22,16)(11,23,17)(12,24,18)(13,25,19)(14,26,20)(29,48,50)(30,49,51)(31,43,52)(32,44,53)(33,45,54)(34,46,55)(35,47,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,8,39,48),(2,9,40,49),(3,10,41,43),(4,11,42,44),(5,12,36,45),(6,13,37,46),(7,14,38,47),(15,51,30,28),(16,52,31,22),(17,53,32,23),(18,54,33,24),(19,55,34,25),(20,56,35,26),(21,50,29,27)], [(1,21,39,29),(2,15,40,30),(3,16,41,31),(4,17,42,32),(5,18,36,33),(6,19,37,34),(7,20,38,35),(8,27,48,50),(9,28,49,51),(10,22,43,52),(11,23,44,53),(12,24,45,54),(13,25,46,55),(14,26,47,56)], [(8,27,21),(9,28,15),(10,22,16),(11,23,17),(12,24,18),(13,25,19),(14,26,20),(29,48,50),(30,49,51),(31,43,52),(32,44,53),(33,45,54),(34,46,55),(35,47,56)]])

C7×SL2(𝔽3) is a maximal subgroup of   Q8.D21  Q8⋊D21  Dic7.2A4

49 conjugacy classes

class 1  2 3A3B 4 6A6B7A···7F14A···14F21A···21L28A···28F42A···42L
order12334667···714···1421···2128···2842···42
size11446441···11···14···46···64···4

49 irreducible representations

dim111122233
type+-+
imageC1C3C7C21SL2(𝔽3)SL2(𝔽3)C7×SL2(𝔽3)A4C7×A4
kernelC7×SL2(𝔽3)C7×Q8SL2(𝔽3)Q8C7C7C1C14C2
# reps12612121816

Matrix representation of C7×SL2(𝔽3) in GL2(𝔽29) generated by

250
025
,
312
426
,
523
1424
,
016
928
G:=sub<GL(2,GF(29))| [25,0,0,25],[3,4,12,26],[5,14,23,24],[0,9,16,28] >;

C7×SL2(𝔽3) in GAP, Magma, Sage, TeX

C_7\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("C7xSL(2,3)");
// GroupNames label

G:=SmallGroup(168,22);
// by ID

G=gap.SmallGroup(168,22);
# by ID

G:=PCGroup([5,-3,-7,-2,2,-2,632,72,1263,133,58]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=d^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=c,d*c*d^-1=b*c>;
// generators/relations

Export

Subgroup lattice of C7×SL2(𝔽3) in TeX

׿
×
𝔽