metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D167, C167⋊C2, sometimes denoted D334 or Dih167 or Dih334, SmallGroup(334,1)
Series: Derived ►Chief ►Lower central ►Upper central
C167 — D167 |
Generators and relations for D167
G = < a,b | a167=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167)
(1 167)(2 166)(3 165)(4 164)(5 163)(6 162)(7 161)(8 160)(9 159)(10 158)(11 157)(12 156)(13 155)(14 154)(15 153)(16 152)(17 151)(18 150)(19 149)(20 148)(21 147)(22 146)(23 145)(24 144)(25 143)(26 142)(27 141)(28 140)(29 139)(30 138)(31 137)(32 136)(33 135)(34 134)(35 133)(36 132)(37 131)(38 130)(39 129)(40 128)(41 127)(42 126)(43 125)(44 124)(45 123)(46 122)(47 121)(48 120)(49 119)(50 118)(51 117)(52 116)(53 115)(54 114)(55 113)(56 112)(57 111)(58 110)(59 109)(60 108)(61 107)(62 106)(63 105)(64 104)(65 103)(66 102)(67 101)(68 100)(69 99)(70 98)(71 97)(72 96)(73 95)(74 94)(75 93)(76 92)(77 91)(78 90)(79 89)(80 88)(81 87)(82 86)(83 85)
G:=sub<Sym(167)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167), (1,167)(2,166)(3,165)(4,164)(5,163)(6,162)(7,161)(8,160)(9,159)(10,158)(11,157)(12,156)(13,155)(14,154)(15,153)(16,152)(17,151)(18,150)(19,149)(20,148)(21,147)(22,146)(23,145)(24,144)(25,143)(26,142)(27,141)(28,140)(29,139)(30,138)(31,137)(32,136)(33,135)(34,134)(35,133)(36,132)(37,131)(38,130)(39,129)(40,128)(41,127)(42,126)(43,125)(44,124)(45,123)(46,122)(47,121)(48,120)(49,119)(50,118)(51,117)(52,116)(53,115)(54,114)(55,113)(56,112)(57,111)(58,110)(59,109)(60,108)(61,107)(62,106)(63,105)(64,104)(65,103)(66,102)(67,101)(68,100)(69,99)(70,98)(71,97)(72,96)(73,95)(74,94)(75,93)(76,92)(77,91)(78,90)(79,89)(80,88)(81,87)(82,86)(83,85)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167), (1,167)(2,166)(3,165)(4,164)(5,163)(6,162)(7,161)(8,160)(9,159)(10,158)(11,157)(12,156)(13,155)(14,154)(15,153)(16,152)(17,151)(18,150)(19,149)(20,148)(21,147)(22,146)(23,145)(24,144)(25,143)(26,142)(27,141)(28,140)(29,139)(30,138)(31,137)(32,136)(33,135)(34,134)(35,133)(36,132)(37,131)(38,130)(39,129)(40,128)(41,127)(42,126)(43,125)(44,124)(45,123)(46,122)(47,121)(48,120)(49,119)(50,118)(51,117)(52,116)(53,115)(54,114)(55,113)(56,112)(57,111)(58,110)(59,109)(60,108)(61,107)(62,106)(63,105)(64,104)(65,103)(66,102)(67,101)(68,100)(69,99)(70,98)(71,97)(72,96)(73,95)(74,94)(75,93)(76,92)(77,91)(78,90)(79,89)(80,88)(81,87)(82,86)(83,85) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167)], [(1,167),(2,166),(3,165),(4,164),(5,163),(6,162),(7,161),(8,160),(9,159),(10,158),(11,157),(12,156),(13,155),(14,154),(15,153),(16,152),(17,151),(18,150),(19,149),(20,148),(21,147),(22,146),(23,145),(24,144),(25,143),(26,142),(27,141),(28,140),(29,139),(30,138),(31,137),(32,136),(33,135),(34,134),(35,133),(36,132),(37,131),(38,130),(39,129),(40,128),(41,127),(42,126),(43,125),(44,124),(45,123),(46,122),(47,121),(48,120),(49,119),(50,118),(51,117),(52,116),(53,115),(54,114),(55,113),(56,112),(57,111),(58,110),(59,109),(60,108),(61,107),(62,106),(63,105),(64,104),(65,103),(66,102),(67,101),(68,100),(69,99),(70,98),(71,97),(72,96),(73,95),(74,94),(75,93),(76,92),(77,91),(78,90),(79,89),(80,88),(81,87),(82,86),(83,85)]])
85 conjugacy classes
class | 1 | 2 | 167A | ··· | 167CE |
order | 1 | 2 | 167 | ··· | 167 |
size | 1 | 167 | 2 | ··· | 2 |
85 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D167 |
kernel | D167 | C167 | C1 |
# reps | 1 | 1 | 83 |
Matrix representation of D167 ►in GL2(𝔽2339) generated by
1034 | 2338 |
1 | 0 |
1034 | 2338 |
232 | 1305 |
G:=sub<GL(2,GF(2339))| [1034,1,2338,0],[1034,232,2338,1305] >;
D167 in GAP, Magma, Sage, TeX
D_{167}
% in TeX
G:=Group("D167");
// GroupNames label
G:=SmallGroup(334,1);
// by ID
G=gap.SmallGroup(334,1);
# by ID
G:=PCGroup([2,-2,-167,1329]);
// Polycyclic
G:=Group<a,b|a^167=b^2=1,b*a*b=a^-1>;
// generators/relations
Export