non-abelian, supersoluble, monomial
Aliases: He3.6D6, C9.2S32, C9⋊S3⋊4S3, (C3×C9)⋊4D6, C32.4S32, C9○He3⋊C22, He3.4C6⋊C2, He3.4S3⋊C2, He3⋊C2.3S3, C3.3(C32⋊4D6), SmallGroup(324,125)
Series: Derived ►Chief ►Lower central ►Upper central
C9○He3 — He3.6D6 |
Generators and relations for He3.6D6
G = < a,b,c,d,e | a3=b3=c3=e2=1, d6=ebe=b-1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, bd=db, dcd-1=c-1, ce=ec, ede=bd5 >
Subgroups: 555 in 71 conjugacy classes, 16 normal (8 characteristic)
C1, C2, C3, C3, C22, S3, C6, C9, C9, C32, C32, D6, D9, C18, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, 3- 1+2, D18, S32, C3×D9, S3×C9, C32⋊C6, C9⋊C6, C9⋊S3, He3⋊C2, C9○He3, S3×D9, C32⋊D6, He3.4S3, He3.4C6, He3.6D6
Quotients: C1, C2, C22, S3, D6, S32, C32⋊4D6, He3.6D6
Character table of He3.6D6
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 18A | 18B | 18C | |
size | 1 | 9 | 27 | 27 | 2 | 6 | 6 | 12 | 18 | 54 | 54 | 2 | 2 | 2 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 0 | 0 | -2 | 2 | -1 | 2 | -1 | 0 | 0 | 1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ7 | 2 | 0 | -2 | 0 | 2 | 2 | -1 | -1 | 0 | 1 | 0 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ8 | 2 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 0 | 2 | 2 | -1 | -1 | 0 | -1 | 0 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ11 | 4 | 0 | 0 | 0 | 4 | 4 | -2 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ12 | 4 | 0 | 0 | 0 | 4 | -2 | 4 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | -2 | 1 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ13 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 4 | 4 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ14 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | -2 | -2 | -2 | -1+3√-3/2 | 1 | 1 | -1-3√-3/2 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
ρ15 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | -2 | -2 | -2 | -1-3√-3/2 | 1 | 1 | -1+3√-3/2 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
ρ16 | 6 | 2 | 0 | 0 | -3 | 0 | 0 | 0 | -1 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 0 | 0 | 0 | 0 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal faithful |
ρ17 | 6 | 2 | 0 | 0 | -3 | 0 | 0 | 0 | -1 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 0 | 0 | 0 | 0 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal faithful |
ρ18 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 1 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 0 | 0 | 0 | 0 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal faithful |
ρ19 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 1 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 0 | 0 | 0 | 0 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal faithful |
ρ20 | 6 | 2 | 0 | 0 | -3 | 0 | 0 | 0 | -1 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 0 | 0 | 0 | 0 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal faithful |
ρ21 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 1 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 0 | 0 | 0 | 0 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal faithful |
(1 23 14)(2 15 24)(3 25 16)(4 17 26)(5 27 18)(6 19 10)(7 11 20)(8 21 12)(9 13 22)
(1 4 7)(2 5 8)(3 6 9)(10 22 16)(11 23 17)(12 24 18)(13 25 19)(14 26 20)(15 27 21)
(10 16 22)(11 23 17)(12 18 24)(13 25 19)(14 20 26)(15 27 21)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
(1 3)(4 9)(5 8)(6 7)(10 11)(12 27)(13 26)(14 25)(15 24)(16 23)(17 22)(18 21)(19 20)
G:=sub<Sym(27)| (1,23,14)(2,15,24)(3,25,16)(4,17,26)(5,27,18)(6,19,10)(7,11,20)(8,21,12)(9,13,22), (1,4,7)(2,5,8)(3,6,9)(10,22,16)(11,23,17)(12,24,18)(13,25,19)(14,26,20)(15,27,21), (10,16,22)(11,23,17)(12,18,24)(13,25,19)(14,20,26)(15,27,21), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27), (1,3)(4,9)(5,8)(6,7)(10,11)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)>;
G:=Group( (1,23,14)(2,15,24)(3,25,16)(4,17,26)(5,27,18)(6,19,10)(7,11,20)(8,21,12)(9,13,22), (1,4,7)(2,5,8)(3,6,9)(10,22,16)(11,23,17)(12,24,18)(13,25,19)(14,26,20)(15,27,21), (10,16,22)(11,23,17)(12,18,24)(13,25,19)(14,20,26)(15,27,21), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27), (1,3)(4,9)(5,8)(6,7)(10,11)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20) );
G=PermutationGroup([[(1,23,14),(2,15,24),(3,25,16),(4,17,26),(5,27,18),(6,19,10),(7,11,20),(8,21,12),(9,13,22)], [(1,4,7),(2,5,8),(3,6,9),(10,22,16),(11,23,17),(12,24,18),(13,25,19),(14,26,20),(15,27,21)], [(10,16,22),(11,23,17),(12,18,24),(13,25,19),(14,20,26),(15,27,21)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)], [(1,3),(4,9),(5,8),(6,7),(10,11),(12,27),(13,26),(14,25),(15,24),(16,23),(17,22),(18,21),(19,20)]])
G:=TransitiveGroup(27,122);
Matrix representation of He3.6D6 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
18 | 18 | 0 | 18 | 18 | 18 |
0 | 0 | 1 | 0 | 1 | 0 |
18 | 1 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 |
0 | 18 | 0 | 18 | 18 | 18 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
18 | 18 | 18 | 18 | 17 | 18 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 0 |
12 | 2 | 0 | 0 | 0 | 0 |
17 | 14 | 0 | 0 | 0 | 0 |
17 | 17 | 17 | 17 | 3 | 10 |
5 | 5 | 5 | 5 | 12 | 3 |
2 | 0 | 2 | 0 | 14 | 2 |
2 | 0 | 14 | 2 | 14 | 2 |
18 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 |
0 | 18 | 0 | 18 | 0 | 18 |
G:=sub<GL(6,GF(19))| [1,0,0,0,18,0,0,1,0,0,18,0,0,0,18,18,0,1,0,0,1,0,18,0,0,0,0,0,18,1,0,0,0,0,18,0],[18,18,0,0,1,0,1,0,0,0,0,18,0,0,18,18,1,0,0,0,1,0,0,18,0,0,0,0,0,18,0,0,0,0,1,18],[0,0,0,18,0,1,0,0,0,18,0,0,1,0,0,18,0,0,0,1,0,18,0,0,0,0,18,17,1,1,0,0,1,18,0,0],[12,17,17,5,2,2,2,14,17,5,0,0,0,0,17,5,2,14,0,0,17,5,0,2,0,0,3,12,14,14,0,0,10,3,2,2],[18,0,0,0,1,0,1,1,0,0,0,18,0,0,18,0,1,0,0,0,1,1,0,18,0,0,0,0,1,0,0,0,0,0,1,18] >;
He3.6D6 in GAP, Magma, Sage, TeX
{\rm He}_3._6D_6
% in TeX
G:=Group("He3.6D6");
// GroupNames label
G:=SmallGroup(324,125);
// by ID
G=gap.SmallGroup(324,125);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,146,80,1593,453,2164,1096,3899]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^6=e*b*e=b^-1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e=b*d^5>;
// generators/relations
Export