Extensions 1→N→G→Q→1 with N=He3 and Q=D6

Direct product G=N×Q with N=He3 and Q=D6
dρLabelID
C2×S3×He3366C2xS3xHe3324,139

Semidirect products G=N:Q with N=He3 and Q=D6
extensionφ:Q→Out NdρLabelID
He3⋊D6 = He3⋊D6φ: D6/C1D6 ⊆ Out He396+He3:D6324,39
He32D6 = C2×C33⋊C6φ: D6/C2S3 ⊆ Out He3186+He3:2D6324,69
He33D6 = C2×C33⋊S3φ: D6/C2S3 ⊆ Out He3186+He3:3D6324,77
He34D6 = C2×He3⋊S3φ: D6/C2S3 ⊆ Out He3546+He3:4D6324,79
He35D6 = He35D6φ: D6/C3C22 ⊆ Out He31812+He3:5D6324,121
He36D6 = He36D6φ: D6/C3C22 ⊆ Out He327He3:6D6324,124
He37D6 = S3×C32⋊C6φ: D6/S3C2 ⊆ Out He31812+He3:7D6324,116
He38D6 = S3×He3⋊C2φ: D6/S3C2 ⊆ Out He3186He3:8D6324,122
He39D6 = C2×He34S3φ: D6/C6C2 ⊆ Out He354He3:9D6324,144
He310D6 = C2×He35S3φ: D6/C6C2 ⊆ Out He3366He3:10D6324,150

Non-split extensions G=N.Q with N=He3 and Q=D6
extensionφ:Q→Out NdρLabelID
He3.1D6 = He3.D6φ: D6/C1D6 ⊆ Out He3276+He3.1D6324,40
He3.2D6 = He3.2D6φ: D6/C1D6 ⊆ Out He3276+He3.2D6324,41
He3.3D6 = C2×He3.S3φ: D6/C2S3 ⊆ Out He3546+He3.3D6324,71
He3.4D6 = C2×He3.2S3φ: D6/C2S3 ⊆ Out He3546+He3.4D6324,73
He3.5D6 = C2×He3.3S3φ: D6/C2S3 ⊆ Out He3546+He3.5D6324,78
He3.6D6 = He3.6D6φ: D6/C3C22 ⊆ Out He3276+He3.6D6324,125
He3.7D6 = C2×He3.4S3φ: D6/C6C2 ⊆ Out He3546+He3.7D6324,147

׿
×
𝔽