extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C28)⋊1C6 = D28⋊6C6 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | 6 | (C2xC28):1C6 | 336,124 |
(C2×C28)⋊2C6 = C2×C4⋊F7 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | | (C2xC28):2C6 | 336,123 |
(C2×C28)⋊3C6 = C2×C4×F7 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | | (C2xC28):3C6 | 336,122 |
(C2×C28)⋊4C6 = C2×D4×C7⋊C3 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | | (C2xC28):4C6 | 336,165 |
(C2×C28)⋊5C6 = C4○D4×C7⋊C3 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | 6 | (C2xC28):5C6 | 336,167 |
(C2×C28)⋊6C6 = D14⋊C12 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | | (C2xC28):6C6 | 336,17 |
(C2×C28)⋊7C6 = C22⋊C4×C7⋊C3 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | | (C2xC28):7C6 | 336,49 |
(C2×C28)⋊8C6 = C22×C4×C7⋊C3 | φ: C6/C2 → C3 ⊆ Aut C2×C28 | 112 | | (C2xC28):8C6 | 336,164 |
(C2×C28)⋊9C6 = C3×D14⋊C4 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | | (C2xC28):9C6 | 336,68 |
(C2×C28)⋊10C6 = C22⋊C4×C21 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | | (C2xC28):10C6 | 336,107 |
(C2×C28)⋊11C6 = C6×D28 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | | (C2xC28):11C6 | 336,176 |
(C2×C28)⋊12C6 = C3×C4○D28 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | 2 | (C2xC28):12C6 | 336,177 |
(C2×C28)⋊13C6 = D7×C2×C12 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | | (C2xC28):13C6 | 336,175 |
(C2×C28)⋊14C6 = D4×C42 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | | (C2xC28):14C6 | 336,205 |
(C2×C28)⋊15C6 = C4○D4×C21 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | 2 | (C2xC28):15C6 | 336,207 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C28).1C6 = C28.C12 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | 6 | (C2xC28).1C6 | 336,13 |
(C2×C28).2C6 = C28⋊C12 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 112 | | (C2xC28).2C6 | 336,16 |
(C2×C28).3C6 = C2×C4.F7 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 112 | | (C2xC28).3C6 | 336,121 |
(C2×C28).4C6 = C2×C7⋊C24 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 112 | | (C2xC28).4C6 | 336,12 |
(C2×C28).5C6 = C4×C7⋊C12 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 112 | | (C2xC28).5C6 | 336,14 |
(C2×C28).6C6 = M4(2)×C7⋊C3 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 56 | 6 | (C2xC28).6C6 | 336,52 |
(C2×C28).7C6 = C2×Q8×C7⋊C3 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 112 | | (C2xC28).7C6 | 336,166 |
(C2×C28).8C6 = Dic7⋊C12 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 112 | | (C2xC28).8C6 | 336,15 |
(C2×C28).9C6 = C4⋊C4×C7⋊C3 | φ: C6/C1 → C6 ⊆ Aut C2×C28 | 112 | | (C2xC28).9C6 | 336,50 |
(C2×C28).10C6 = C42×C7⋊C3 | φ: C6/C2 → C3 ⊆ Aut C2×C28 | 112 | | (C2xC28).10C6 | 336,48 |
(C2×C28).11C6 = C2×C8×C7⋊C3 | φ: C6/C2 → C3 ⊆ Aut C2×C28 | 112 | | (C2xC28).11C6 | 336,51 |
(C2×C28).12C6 = C3×Dic7⋊C4 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 336 | | (C2xC28).12C6 | 336,66 |
(C2×C28).13C6 = C4⋊C4×C21 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 336 | | (C2xC28).13C6 | 336,108 |
(C2×C28).14C6 = C3×C4⋊Dic7 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 336 | | (C2xC28).14C6 | 336,67 |
(C2×C28).15C6 = C6×Dic14 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 336 | | (C2xC28).15C6 | 336,174 |
(C2×C28).16C6 = C3×C4.Dic7 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | 2 | (C2xC28).16C6 | 336,64 |
(C2×C28).17C6 = C6×C7⋊C8 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 336 | | (C2xC28).17C6 | 336,63 |
(C2×C28).18C6 = C12×Dic7 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 336 | | (C2xC28).18C6 | 336,65 |
(C2×C28).19C6 = M4(2)×C21 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 168 | 2 | (C2xC28).19C6 | 336,110 |
(C2×C28).20C6 = Q8×C42 | φ: C6/C3 → C2 ⊆ Aut C2×C28 | 336 | | (C2xC28).20C6 | 336,206 |