Copied to
clipboard

G = C2×C8×C7⋊C3order 336 = 24·3·7

Direct product of C2×C8 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C8×C7⋊C3, C568C6, C142C24, C28.6C12, (C2×C56)⋊C3, C73(C2×C24), (C2×C28).11C6, C28.29(C2×C6), (C2×C14).4C12, C14.13(C2×C12), C4.3(C4×C7⋊C3), (C4×C7⋊C3).6C4, C22.2(C4×C7⋊C3), C4.6(C22×C7⋊C3), (C22×C7⋊C3).4C4, (C4×C7⋊C3).22C22, C2.2(C2×C4×C7⋊C3), (C2×C4×C7⋊C3).11C2, (C2×C4).5(C2×C7⋊C3), (C2×C7⋊C3).13(C2×C4), SmallGroup(336,51)

Series: Derived Chief Lower central Upper central

C1C7 — C2×C8×C7⋊C3
C1C7C14C28C4×C7⋊C3C2×C4×C7⋊C3 — C2×C8×C7⋊C3
C7 — C2×C8×C7⋊C3
C1C2×C8

Generators and relations for C2×C8×C7⋊C3
 G = < a,b,c,d | a2=b8=c7=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C3
7C6
7C6
7C6
7C12
7C2×C6
7C12
7C24
7C24
7C2×C12
7C2×C24

Smallest permutation representation of C2×C8×C7⋊C3
On 112 points
Generators in S112
(1 112)(2 105)(3 106)(4 107)(5 108)(6 109)(7 110)(8 111)(9 89)(10 90)(11 91)(12 92)(13 93)(14 94)(15 95)(16 96)(17 97)(18 98)(19 99)(20 100)(21 101)(22 102)(23 103)(24 104)(25 63)(26 64)(27 57)(28 58)(29 59)(30 60)(31 61)(32 62)(33 71)(34 72)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(41 79)(42 80)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 87)(50 88)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 72 89 60 85 97 80)(2 65 90 61 86 98 73)(3 66 91 62 87 99 74)(4 67 92 63 88 100 75)(5 68 93 64 81 101 76)(6 69 94 57 82 102 77)(7 70 95 58 83 103 78)(8 71 96 59 84 104 79)(9 30 55 17 42 112 34)(10 31 56 18 43 105 35)(11 32 49 19 44 106 36)(12 25 50 20 45 107 37)(13 26 51 21 46 108 38)(14 27 52 22 47 109 39)(15 28 53 23 48 110 40)(16 29 54 24 41 111 33)
(9 55 34)(10 56 35)(11 49 36)(12 50 37)(13 51 38)(14 52 39)(15 53 40)(16 54 33)(17 30 42)(18 31 43)(19 32 44)(20 25 45)(21 26 46)(22 27 47)(23 28 48)(24 29 41)(57 77 102)(58 78 103)(59 79 104)(60 80 97)(61 73 98)(62 74 99)(63 75 100)(64 76 101)(65 90 86)(66 91 87)(67 92 88)(68 93 81)(69 94 82)(70 95 83)(71 96 84)(72 89 85)

G:=sub<Sym(112)| (1,112)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,63)(26,64)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,71)(34,72)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,79)(42,80)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,87)(50,88)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,72,89,60,85,97,80)(2,65,90,61,86,98,73)(3,66,91,62,87,99,74)(4,67,92,63,88,100,75)(5,68,93,64,81,101,76)(6,69,94,57,82,102,77)(7,70,95,58,83,103,78)(8,71,96,59,84,104,79)(9,30,55,17,42,112,34)(10,31,56,18,43,105,35)(11,32,49,19,44,106,36)(12,25,50,20,45,107,37)(13,26,51,21,46,108,38)(14,27,52,22,47,109,39)(15,28,53,23,48,110,40)(16,29,54,24,41,111,33), (9,55,34)(10,56,35)(11,49,36)(12,50,37)(13,51,38)(14,52,39)(15,53,40)(16,54,33)(17,30,42)(18,31,43)(19,32,44)(20,25,45)(21,26,46)(22,27,47)(23,28,48)(24,29,41)(57,77,102)(58,78,103)(59,79,104)(60,80,97)(61,73,98)(62,74,99)(63,75,100)(64,76,101)(65,90,86)(66,91,87)(67,92,88)(68,93,81)(69,94,82)(70,95,83)(71,96,84)(72,89,85)>;

G:=Group( (1,112)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,97)(18,98)(19,99)(20,100)(21,101)(22,102)(23,103)(24,104)(25,63)(26,64)(27,57)(28,58)(29,59)(30,60)(31,61)(32,62)(33,71)(34,72)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,79)(42,80)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,87)(50,88)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,72,89,60,85,97,80)(2,65,90,61,86,98,73)(3,66,91,62,87,99,74)(4,67,92,63,88,100,75)(5,68,93,64,81,101,76)(6,69,94,57,82,102,77)(7,70,95,58,83,103,78)(8,71,96,59,84,104,79)(9,30,55,17,42,112,34)(10,31,56,18,43,105,35)(11,32,49,19,44,106,36)(12,25,50,20,45,107,37)(13,26,51,21,46,108,38)(14,27,52,22,47,109,39)(15,28,53,23,48,110,40)(16,29,54,24,41,111,33), (9,55,34)(10,56,35)(11,49,36)(12,50,37)(13,51,38)(14,52,39)(15,53,40)(16,54,33)(17,30,42)(18,31,43)(19,32,44)(20,25,45)(21,26,46)(22,27,47)(23,28,48)(24,29,41)(57,77,102)(58,78,103)(59,79,104)(60,80,97)(61,73,98)(62,74,99)(63,75,100)(64,76,101)(65,90,86)(66,91,87)(67,92,88)(68,93,81)(69,94,82)(70,95,83)(71,96,84)(72,89,85) );

G=PermutationGroup([[(1,112),(2,105),(3,106),(4,107),(5,108),(6,109),(7,110),(8,111),(9,89),(10,90),(11,91),(12,92),(13,93),(14,94),(15,95),(16,96),(17,97),(18,98),(19,99),(20,100),(21,101),(22,102),(23,103),(24,104),(25,63),(26,64),(27,57),(28,58),(29,59),(30,60),(31,61),(32,62),(33,71),(34,72),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(41,79),(42,80),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,87),(50,88),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,72,89,60,85,97,80),(2,65,90,61,86,98,73),(3,66,91,62,87,99,74),(4,67,92,63,88,100,75),(5,68,93,64,81,101,76),(6,69,94,57,82,102,77),(7,70,95,58,83,103,78),(8,71,96,59,84,104,79),(9,30,55,17,42,112,34),(10,31,56,18,43,105,35),(11,32,49,19,44,106,36),(12,25,50,20,45,107,37),(13,26,51,21,46,108,38),(14,27,52,22,47,109,39),(15,28,53,23,48,110,40),(16,29,54,24,41,111,33)], [(9,55,34),(10,56,35),(11,49,36),(12,50,37),(13,51,38),(14,52,39),(15,53,40),(16,54,33),(17,30,42),(18,31,43),(19,32,44),(20,25,45),(21,26,46),(22,27,47),(23,28,48),(24,29,41),(57,77,102),(58,78,103),(59,79,104),(60,80,97),(61,73,98),(62,74,99),(63,75,100),(64,76,101),(65,90,86),(66,91,87),(67,92,88),(68,93,81),(69,94,82),(70,95,83),(71,96,84),(72,89,85)]])

80 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A···6F7A7B8A···8H12A···12H14A···14F24A···24P28A···28H56A···56P
order12223344446···6778···812···1214···1424···2428···2856···56
size11117711117···7331···17···73···37···73···33···3

80 irreducible representations

dim111111111111333333
type+++
imageC1C2C2C3C4C4C6C6C8C12C12C24C7⋊C3C2×C7⋊C3C2×C7⋊C3C4×C7⋊C3C4×C7⋊C3C8×C7⋊C3
kernelC2×C8×C7⋊C3C8×C7⋊C3C2×C4×C7⋊C3C2×C56C4×C7⋊C3C22×C7⋊C3C56C2×C28C2×C7⋊C3C28C2×C14C14C2×C8C8C2×C4C4C22C2
# reps12122242844162424416

Matrix representation of C2×C8×C7⋊C3 in GL4(𝔽337) generated by

336000
0100
0010
0001
,
336000
011100
001110
000111
,
1000
03362121
002121
03362131
,
208000
02131125
0100
011124
G:=sub<GL(4,GF(337))| [336,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[336,0,0,0,0,111,0,0,0,0,111,0,0,0,0,111],[1,0,0,0,0,336,0,336,0,212,212,213,0,1,1,1],[208,0,0,0,0,213,1,1,0,1,0,1,0,125,0,124] >;

C2×C8×C7⋊C3 in GAP, Magma, Sage, TeX

C_2\times C_8\times C_7\rtimes C_3
% in TeX

G:=Group("C2xC8xC7:C3");
// GroupNames label

G:=SmallGroup(336,51);
// by ID

G=gap.SmallGroup(336,51);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,79,69,881]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^7=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of C2×C8×C7⋊C3 in TeX

׿
×
𝔽