Extensions 1→N→G→Q→1 with N=C6 and Q=He3⋊C2

Direct product G=N×Q with N=C6 and Q=He3⋊C2
dρLabelID
C6×He3⋊C254C6xHe3:C2324,145

Semidirect products G=N:Q with N=C6 and Q=He3⋊C2
extensionφ:Q→Aut NdρLabelID
C6⋊(He3⋊C2) = C2×He35S3φ: He3⋊C2/He3C2 ⊆ Aut C6366C6:(He3:C2)324,150

Non-split extensions G=N.Q with N=C6 and Q=He3⋊C2
extensionφ:Q→Aut NdρLabelID
C6.1(He3⋊C2) = C322Dic9φ: He3⋊C2/He3C2 ⊆ Aut C6366C6.1(He3:C2)324,20
C6.2(He3⋊C2) = C33⋊Dic3φ: He3⋊C2/He3C2 ⊆ Aut C6366-C6.2(He3:C2)324,22
C6.3(He3⋊C2) = He3.3Dic3φ: He3⋊C2/He3C2 ⊆ Aut C61086-C6.3(He3:C2)324,23
C6.4(He3⋊C2) = He3⋊Dic3φ: He3⋊C2/He3C2 ⊆ Aut C61086-C6.4(He3:C2)324,24
C6.5(He3⋊C2) = 3- 1+2.Dic3φ: He3⋊C2/He3C2 ⊆ Aut C61086-C6.5(He3:C2)324,25
C6.6(He3⋊C2) = C2×C322D9φ: He3⋊C2/He3C2 ⊆ Aut C6366C6.6(He3:C2)324,75
C6.7(He3⋊C2) = C2×C33⋊S3φ: He3⋊C2/He3C2 ⊆ Aut C6186+C6.7(He3:C2)324,77
C6.8(He3⋊C2) = C2×He3.3S3φ: He3⋊C2/He3C2 ⊆ Aut C6546+C6.8(He3:C2)324,78
C6.9(He3⋊C2) = C2×He3⋊S3φ: He3⋊C2/He3C2 ⊆ Aut C6546+C6.9(He3:C2)324,79
C6.10(He3⋊C2) = C2×3- 1+2.S3φ: He3⋊C2/He3C2 ⊆ Aut C6546+C6.10(He3:C2)324,80
C6.11(He3⋊C2) = He36Dic3φ: He3⋊C2/He3C2 ⊆ Aut C6366C6.11(He3:C2)324,104
C6.12(He3⋊C2) = C3×He33C4central extension (φ=1)108C6.12(He3:C2)324,99

׿
×
𝔽