extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(He3⋊C2) = C32⋊2Dic9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 36 | 6 | C6.1(He3:C2) | 324,20 |
C6.2(He3⋊C2) = C33⋊Dic3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 36 | 6- | C6.2(He3:C2) | 324,22 |
C6.3(He3⋊C2) = He3.3Dic3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 108 | 6- | C6.3(He3:C2) | 324,23 |
C6.4(He3⋊C2) = He3⋊Dic3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 108 | 6- | C6.4(He3:C2) | 324,24 |
C6.5(He3⋊C2) = 3- 1+2.Dic3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 108 | 6- | C6.5(He3:C2) | 324,25 |
C6.6(He3⋊C2) = C2×C32⋊2D9 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 36 | 6 | C6.6(He3:C2) | 324,75 |
C6.7(He3⋊C2) = C2×C33⋊S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 18 | 6+ | C6.7(He3:C2) | 324,77 |
C6.8(He3⋊C2) = C2×He3.3S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 54 | 6+ | C6.8(He3:C2) | 324,78 |
C6.9(He3⋊C2) = C2×He3⋊S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 54 | 6+ | C6.9(He3:C2) | 324,79 |
C6.10(He3⋊C2) = C2×3- 1+2.S3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 54 | 6+ | C6.10(He3:C2) | 324,80 |
C6.11(He3⋊C2) = He3⋊6Dic3 | φ: He3⋊C2/He3 → C2 ⊆ Aut C6 | 36 | 6 | C6.11(He3:C2) | 324,104 |
C6.12(He3⋊C2) = C3×He3⋊3C4 | central extension (φ=1) | 108 | | C6.12(He3:C2) | 324,99 |