Copied to
clipboard

G = 3- 1+2.Dic3order 324 = 22·34

The non-split extension by 3- 1+2 of Dic3 acting via Dic3/C2=S3

non-abelian, supersoluble, monomial

Aliases: 3- 1+2.Dic3, C3.He3⋊C4, (C3×C18).9S3, (C3×C9).2Dic3, C6.5(He3⋊C2), C3.5(He33C4), C32.4(C3⋊Dic3), (C2×3- 1+2).3S3, C2.(3- 1+2.S3), (C3×C6).4(C3⋊S3), (C2×C3.He3).C2, SmallGroup(324,25)

Series: Derived Chief Lower central Upper central

C1C32C3.He3 — 3- 1+2.Dic3
C1C3C32C3×C9C3.He3C2×C3.He3 — 3- 1+2.Dic3
C3.He3 — 3- 1+2.Dic3
C1C2

Generators and relations for 3- 1+2.Dic3
 G = < a,b,c,d | a9=b3=1, c6=a6, d2=a6c3, bab-1=a4, cac-1=a4b-1, dad-1=a-1, bc=cb, bd=db, dcd-1=a3c5 >

3C3
27C4
3C6
3C9
3C9
3C9
3C9
9Dic3
27C12
3C18
3C18
3C18
3C18
3Dic9
3Dic9
3Dic9
3Dic9
9C3×Dic3
3C9⋊C12
3C3×Dic9
3C9⋊C12
3C9⋊C12

Character table of 3- 1+2.Dic3

 class 123A3B3C4A4B6A6B6C9A9B9C9D9E9F12A12B12C12D18A18B18C18D18E18F
 size 11233272723366618181827272727666181818
ρ111111111111111111111111111    trivial
ρ211111-1-1111111111-1-1-1-1111111    linear of order 2
ρ31-1111-ii-1-1-1111111-ii-ii-1-1-1-1-1-1    linear of order 4
ρ41-1111i-i-1-1-1111111i-ii-i-1-1-1-1-1-1    linear of order 4
ρ52222200222-1-1-1-12-10000-1-1-1-12-1    orthogonal lifted from S3
ρ62222200222-1-1-12-1-10000-1-1-12-1-1    orthogonal lifted from S3
ρ72222200222222-1-1-10000222-1-1-1    orthogonal lifted from S3
ρ82222200222-1-1-1-1-120000-1-1-1-1-12    orthogonal lifted from S3
ρ92-222200-2-2-2-1-1-1-12-100001111-21    symplectic lifted from Dic3, Schur index 2
ρ102-222200-2-2-2-1-1-12-1-10000111-211    symplectic lifted from Dic3, Schur index 2
ρ112-222200-2-2-2222-1-1-10000-2-2-2111    symplectic lifted from Dic3, Schur index 2
ρ122-222200-2-2-2-1-1-1-1-12000011111-2    symplectic lifted from Dic3, Schur index 2
ρ13333-3-3-3/2-3+3-3/2113-3-3-3/2-3+3-3/2000000ζ32ζ3ζ3ζ32000000    complex lifted from He3⋊C2
ρ14333-3-3-3/2-3+3-3/2-1-13-3-3-3/2-3+3-3/2000000ζ6ζ65ζ65ζ6000000    complex lifted from He3⋊C2
ρ15333-3+3-3/2-3-3-3/2113-3+3-3/2-3-3-3/2000000ζ3ζ32ζ32ζ3000000    complex lifted from He3⋊C2
ρ16333-3+3-3/2-3-3-3/2-1-13-3+3-3/2-3-3-3/2000000ζ65ζ6ζ6ζ65000000    complex lifted from He3⋊C2
ρ173-33-3+3-3/2-3-3-3/2i-i-33-3-3/23+3-3/2000000ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3000000    complex lifted from He33C4
ρ183-33-3+3-3/2-3-3-3/2-ii-33-3-3/23+3-3/2000000ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3000000    complex lifted from He33C4
ρ193-33-3-3-3/2-3+3-3/2i-i-33+3-3/23-3-3/2000000ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32000000    complex lifted from He33C4
ρ203-33-3-3-3/2-3+3-3/2-ii-33+3-3/23-3-3/2000000ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32000000    complex lifted from He33C4
ρ2166-30000-30098+2ζ979492ζ95+2ζ949299894929000000098+2ζ979492ζ95+2ζ949299894929000    orthogonal lifted from 3- 1+2.S3
ρ2266-30000-300ζ95+2ζ94929989492998+2ζ9794920000000ζ95+2ζ94929989492998+2ζ979492000    orthogonal lifted from 3- 1+2.S3
ρ2366-30000-300989492998+2ζ979492ζ95+2ζ949290000000989492998+2ζ979492ζ95+2ζ94929000    orthogonal lifted from 3- 1+2.S3
ρ246-6-30000300989492998+2ζ979492ζ95+2ζ9492900000009594929ζ989492+2ζ9ζ989794+2ζ92000    symplectic faithful, Schur index 2
ρ256-6-3000030098+2ζ979492ζ95+2ζ9492998949290000000ζ989492+2ζ9ζ989794+2ζ929594929000    symplectic faithful, Schur index 2
ρ266-6-30000300ζ95+2ζ94929989492998+2ζ9794920000000ζ989794+2ζ929594929ζ989492+2ζ9000    symplectic faithful, Schur index 2

Smallest permutation representation of 3- 1+2.Dic3
On 108 points
Generators in S108
(1 20 43 13 32 37 7 26 49)(2 33 44 14 27 38 8 21 50)(3 28 45 15 22 39 9 34 51)(4 23 46 16 35 40 10 29 52)(5 36 47 17 30 41 11 24 53)(6 31 48 18 25 42 12 19 54)(55 73 105 67 85 99 61 79 93)(56 74 100 68 86 94 62 80 106)(57 75 95 69 87 107 63 81 101)(58 76 108 70 88 102 64 82 96)(59 77 103 71 89 97 65 83 91)(60 78 98 72 90 92 66 84 104)
(1 13 7)(2 14 8)(3 15 9)(4 16 10)(5 17 11)(6 18 12)(37 43 49)(38 44 50)(39 45 51)(40 46 52)(41 47 53)(42 48 54)(55 61 67)(56 62 68)(57 63 69)(58 64 70)(59 65 71)(60 66 72)(73 85 79)(74 86 80)(75 87 81)(76 88 82)(77 89 83)(78 90 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 62 10 71)(2 61 11 70)(3 60 12 69)(4 59 13 68)(5 58 14 67)(6 57 15 66)(7 56 16 65)(8 55 17 64)(9 72 18 63)(19 95 28 104)(20 94 29 103)(21 93 30 102)(22 92 31 101)(23 91 32 100)(24 108 33 99)(25 107 34 98)(26 106 35 97)(27 105 36 96)(37 74 46 83)(38 73 47 82)(39 90 48 81)(40 89 49 80)(41 88 50 79)(42 87 51 78)(43 86 52 77)(44 85 53 76)(45 84 54 75)

G:=sub<Sym(108)| (1,20,43,13,32,37,7,26,49)(2,33,44,14,27,38,8,21,50)(3,28,45,15,22,39,9,34,51)(4,23,46,16,35,40,10,29,52)(5,36,47,17,30,41,11,24,53)(6,31,48,18,25,42,12,19,54)(55,73,105,67,85,99,61,79,93)(56,74,100,68,86,94,62,80,106)(57,75,95,69,87,107,63,81,101)(58,76,108,70,88,102,64,82,96)(59,77,103,71,89,97,65,83,91)(60,78,98,72,90,92,66,84,104), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,85,79)(74,86,80)(75,87,81)(76,88,82)(77,89,83)(78,90,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,62,10,71)(2,61,11,70)(3,60,12,69)(4,59,13,68)(5,58,14,67)(6,57,15,66)(7,56,16,65)(8,55,17,64)(9,72,18,63)(19,95,28,104)(20,94,29,103)(21,93,30,102)(22,92,31,101)(23,91,32,100)(24,108,33,99)(25,107,34,98)(26,106,35,97)(27,105,36,96)(37,74,46,83)(38,73,47,82)(39,90,48,81)(40,89,49,80)(41,88,50,79)(42,87,51,78)(43,86,52,77)(44,85,53,76)(45,84,54,75)>;

G:=Group( (1,20,43,13,32,37,7,26,49)(2,33,44,14,27,38,8,21,50)(3,28,45,15,22,39,9,34,51)(4,23,46,16,35,40,10,29,52)(5,36,47,17,30,41,11,24,53)(6,31,48,18,25,42,12,19,54)(55,73,105,67,85,99,61,79,93)(56,74,100,68,86,94,62,80,106)(57,75,95,69,87,107,63,81,101)(58,76,108,70,88,102,64,82,96)(59,77,103,71,89,97,65,83,91)(60,78,98,72,90,92,66,84,104), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,85,79)(74,86,80)(75,87,81)(76,88,82)(77,89,83)(78,90,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,62,10,71)(2,61,11,70)(3,60,12,69)(4,59,13,68)(5,58,14,67)(6,57,15,66)(7,56,16,65)(8,55,17,64)(9,72,18,63)(19,95,28,104)(20,94,29,103)(21,93,30,102)(22,92,31,101)(23,91,32,100)(24,108,33,99)(25,107,34,98)(26,106,35,97)(27,105,36,96)(37,74,46,83)(38,73,47,82)(39,90,48,81)(40,89,49,80)(41,88,50,79)(42,87,51,78)(43,86,52,77)(44,85,53,76)(45,84,54,75) );

G=PermutationGroup([[(1,20,43,13,32,37,7,26,49),(2,33,44,14,27,38,8,21,50),(3,28,45,15,22,39,9,34,51),(4,23,46,16,35,40,10,29,52),(5,36,47,17,30,41,11,24,53),(6,31,48,18,25,42,12,19,54),(55,73,105,67,85,99,61,79,93),(56,74,100,68,86,94,62,80,106),(57,75,95,69,87,107,63,81,101),(58,76,108,70,88,102,64,82,96),(59,77,103,71,89,97,65,83,91),(60,78,98,72,90,92,66,84,104)], [(1,13,7),(2,14,8),(3,15,9),(4,16,10),(5,17,11),(6,18,12),(37,43,49),(38,44,50),(39,45,51),(40,46,52),(41,47,53),(42,48,54),(55,61,67),(56,62,68),(57,63,69),(58,64,70),(59,65,71),(60,66,72),(73,85,79),(74,86,80),(75,87,81),(76,88,82),(77,89,83),(78,90,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,62,10,71),(2,61,11,70),(3,60,12,69),(4,59,13,68),(5,58,14,67),(6,57,15,66),(7,56,16,65),(8,55,17,64),(9,72,18,63),(19,95,28,104),(20,94,29,103),(21,93,30,102),(22,92,31,101),(23,91,32,100),(24,108,33,99),(25,107,34,98),(26,106,35,97),(27,105,36,96),(37,74,46,83),(38,73,47,82),(39,90,48,81),(40,89,49,80),(41,88,50,79),(42,87,51,78),(43,86,52,77),(44,85,53,76),(45,84,54,75)]])

Matrix representation of 3- 1+2.Dic3 in GL6(𝔽37)

00363600
001000
00003636
000010
010000
36360000
,
36360000
100000
000100
00363600
000010
000001
,
11310000
6170000
00113100
0061700
0000617
00002026
,
0071400
0073000
7140000
7300000
00002330
0000714

G:=sub<GL(6,GF(37))| [0,0,0,0,0,36,0,0,0,0,1,36,36,1,0,0,0,0,36,0,0,0,0,0,0,0,36,1,0,0,0,0,36,0,0,0],[36,1,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0,0,0,1,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,6,0,0,0,0,31,17,0,0,0,0,0,0,11,6,0,0,0,0,31,17,0,0,0,0,0,0,6,20,0,0,0,0,17,26],[0,0,7,7,0,0,0,0,14,30,0,0,7,7,0,0,0,0,14,30,0,0,0,0,0,0,0,0,23,7,0,0,0,0,30,14] >;

3- 1+2.Dic3 in GAP, Magma, Sage, TeX

3_-^{1+2}.{\rm Dic}_3
% in TeX

G:=Group("ES-(3,1).Dic3");
// GroupNames label

G:=SmallGroup(324,25);
// by ID

G=gap.SmallGroup(324,25);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,12,2090,986,3171,303,453,7564,1096,7781]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^3=1,c^6=a^6,d^2=a^6*c^3,b*a*b^-1=a^4,c*a*c^-1=a^4*b^-1,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a^3*c^5>;
// generators/relations

Export

Subgroup lattice of 3- 1+2.Dic3 in TeX
Character table of 3- 1+2.Dic3 in TeX

׿
×
𝔽