Extensions 1→N→G→Q→1 with N=C3xD4 and Q=D7

Direct product G=NxQ with N=C3xD4 and Q=D7
dρLabelID
C3xD4xD7844C3xD4xD7336,178

Semidirect products G=N:Q with N=C3xD4 and Q=D7
extensionφ:Q→Out NdρLabelID
(C3xD4):1D7 = D4:D21φ: D7/C7C2 ⊆ Out C3xD41684+(C3xD4):1D7336,101
(C3xD4):2D7 = D4xD21φ: D7/C7C2 ⊆ Out C3xD4844+(C3xD4):2D7336,198
(C3xD4):3D7 = D4:2D21φ: D7/C7C2 ⊆ Out C3xD41684-(C3xD4):3D7336,199
(C3xD4):4D7 = C3xD4:D7φ: D7/C7C2 ⊆ Out C3xD41684(C3xD4):4D7336,69
(C3xD4):5D7 = C3xD4:2D7φ: trivial image1684(C3xD4):5D7336,179

Non-split extensions G=N.Q with N=C3xD4 and Q=D7
extensionφ:Q→Out NdρLabelID
(C3xD4).1D7 = D4.D21φ: D7/C7C2 ⊆ Out C3xD41684-(C3xD4).1D7336,102
(C3xD4).2D7 = C3xD4.D7φ: D7/C7C2 ⊆ Out C3xD41684(C3xD4).2D7336,70

׿
x
:
Z
F
o
wr
Q
<