extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×He3).1S3 = C33⋊C12 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 36 | 6- | (C2xHe3).1S3 | 324,14 |
(C2×He3).2S3 = He3.Dic3 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 108 | 6- | (C2xHe3).2S3 | 324,16 |
(C2×He3).3S3 = He3.2Dic3 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 108 | 6- | (C2xHe3).3S3 | 324,18 |
(C2×He3).4S3 = C33⋊Dic3 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 36 | 6- | (C2xHe3).4S3 | 324,22 |
(C2×He3).5S3 = He3.3Dic3 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 108 | 6- | (C2xHe3).5S3 | 324,23 |
(C2×He3).6S3 = He3⋊Dic3 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 108 | 6- | (C2xHe3).6S3 | 324,24 |
(C2×He3).7S3 = C2×He3.S3 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 54 | 6+ | (C2xHe3).7S3 | 324,71 |
(C2×He3).8S3 = C2×He3.2S3 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 54 | 6+ | (C2xHe3).8S3 | 324,73 |
(C2×He3).9S3 = C2×He3.3S3 | φ: S3/C1 → S3 ⊆ Out C2×He3 | 54 | 6+ | (C2xHe3).9S3 | 324,78 |
(C2×He3).10S3 = C33⋊4C12 | φ: S3/C3 → C2 ⊆ Out C2×He3 | 108 | | (C2xHe3).10S3 | 324,98 |
(C2×He3).11S3 = He3.4Dic3 | φ: S3/C3 → C2 ⊆ Out C2×He3 | 108 | 6- | (C2xHe3).11S3 | 324,101 |
(C2×He3).12S3 = He3⋊6Dic3 | φ: S3/C3 → C2 ⊆ Out C2×He3 | 36 | 6 | (C2xHe3).12S3 | 324,104 |
(C2×He3).13S3 = C2×He3.4S3 | φ: S3/C3 → C2 ⊆ Out C2×He3 | 54 | 6+ | (C2xHe3).13S3 | 324,147 |
(C2×He3).14S3 = Dic3×He3 | φ: trivial image | 36 | 6 | (C2xHe3).14S3 | 324,93 |