Extensions 1→N→G→Q→1 with N=C2×He3 and Q=S3

Direct product G=N×Q with N=C2×He3 and Q=S3
dρLabelID
C2×S3×He3366C2xS3xHe3324,139

Semidirect products G=N:Q with N=C2×He3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×He3)⋊1S3 = C2×C33⋊C6φ: S3/C1S3 ⊆ Out C2×He3186+(C2xHe3):1S3324,69
(C2×He3)⋊2S3 = C2×C33⋊S3φ: S3/C1S3 ⊆ Out C2×He3186+(C2xHe3):2S3324,77
(C2×He3)⋊3S3 = C2×He3⋊S3φ: S3/C1S3 ⊆ Out C2×He3546+(C2xHe3):3S3324,79
(C2×He3)⋊4S3 = C2×He34S3φ: S3/C3C2 ⊆ Out C2×He354(C2xHe3):4S3324,144
(C2×He3)⋊5S3 = C2×He35S3φ: S3/C3C2 ⊆ Out C2×He3366(C2xHe3):5S3324,150

Non-split extensions G=N.Q with N=C2×He3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×He3).1S3 = C33⋊C12φ: S3/C1S3 ⊆ Out C2×He3366-(C2xHe3).1S3324,14
(C2×He3).2S3 = He3.Dic3φ: S3/C1S3 ⊆ Out C2×He31086-(C2xHe3).2S3324,16
(C2×He3).3S3 = He3.2Dic3φ: S3/C1S3 ⊆ Out C2×He31086-(C2xHe3).3S3324,18
(C2×He3).4S3 = C33⋊Dic3φ: S3/C1S3 ⊆ Out C2×He3366-(C2xHe3).4S3324,22
(C2×He3).5S3 = He3.3Dic3φ: S3/C1S3 ⊆ Out C2×He31086-(C2xHe3).5S3324,23
(C2×He3).6S3 = He3⋊Dic3φ: S3/C1S3 ⊆ Out C2×He31086-(C2xHe3).6S3324,24
(C2×He3).7S3 = C2×He3.S3φ: S3/C1S3 ⊆ Out C2×He3546+(C2xHe3).7S3324,71
(C2×He3).8S3 = C2×He3.2S3φ: S3/C1S3 ⊆ Out C2×He3546+(C2xHe3).8S3324,73
(C2×He3).9S3 = C2×He3.3S3φ: S3/C1S3 ⊆ Out C2×He3546+(C2xHe3).9S3324,78
(C2×He3).10S3 = C334C12φ: S3/C3C2 ⊆ Out C2×He3108(C2xHe3).10S3324,98
(C2×He3).11S3 = He3.4Dic3φ: S3/C3C2 ⊆ Out C2×He31086-(C2xHe3).11S3324,101
(C2×He3).12S3 = He36Dic3φ: S3/C3C2 ⊆ Out C2×He3366(C2xHe3).12S3324,104
(C2×He3).13S3 = C2×He3.4S3φ: S3/C3C2 ⊆ Out C2×He3546+(C2xHe3).13S3324,147
(C2×He3).14S3 = Dic3×He3φ: trivial image366(C2xHe3).14S3324,93

׿
×
𝔽