direct product, metabelian, supersoluble, monomial
Aliases: C2×He3.S3, He3.3D6, C9⋊S3⋊3C6, (C3×C18)⋊2C6, (C2×He3).7S3, C32.6(S3×C6), C6.7(C32⋊C6), He3.C3⋊3C22, (C2×C9⋊S3)⋊2C3, (C3×C9)⋊3(C2×C6), (C3×C6).17(C3×S3), C3.3(C2×C32⋊C6), (C2×He3.C3)⋊2C2, SmallGroup(324,71)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C9 — C2×He3.S3 |
Generators and relations for C2×He3.S3
G = < a,b,c,d,e,f | a2=b3=c3=d3=f2=1, e3=fcf=c-1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=bc-1, be=eb, fbf=b-1, cd=dc, ce=ec, ede-1=b-1cd, df=fd, fef=ce2 >
Character table of C2×He3.S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 9A | 9B | 9C | 9D | 9E | 18A | 18B | 18C | 18D | 18E | |
size | 1 | 1 | 27 | 27 | 2 | 6 | 9 | 9 | 2 | 6 | 9 | 9 | 27 | 27 | 27 | 27 | 6 | 6 | 6 | 18 | 18 | 6 | 6 | 6 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ65 | ζ6 | ζ6 | ζ3 | ζ65 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | ζ65 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | linear of order 6 |
ρ8 | 1 | -1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | ζ6 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | ζ65 | ζ6 | linear of order 6 |
ρ9 | 1 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | linear of order 6 |
ρ10 | 1 | -1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | ζ65 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | ζ6 | ζ65 | linear of order 6 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ12 | 1 | -1 | -1 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ6 | ζ65 | ζ65 | ζ32 | ζ6 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | ζ6 | ζ65 | linear of order 6 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | 0 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ6 | ζ65 | -1 | -1 | -1 | ζ6 | ζ65 | complex lifted from C3×S3 |
ρ16 | 2 | -2 | 0 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | -2 | -2 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ6 | ζ65 | 1 | 1 | 1 | ζ32 | ζ3 | complex lifted from S3×C6 |
ρ17 | 2 | 2 | 0 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ65 | ζ6 | -1 | -1 | -1 | ζ65 | ζ6 | complex lifted from C3×S3 |
ρ18 | 2 | -2 | 0 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | -2 | -2 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ65 | ζ6 | 1 | 1 | 1 | ζ3 | ζ32 | complex lifted from S3×C6 |
ρ19 | 6 | -6 | 0 | 0 | 6 | -3 | 0 | 0 | -6 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C6 |
ρ20 | 6 | 6 | 0 | 0 | 6 | -3 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ21 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | orthogonal faithful |
ρ22 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ23 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | -6 | 0 | 0 | -3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | orthogonal lifted from He3.S3 |
ρ26 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | orthogonal lifted from He3.S3 |
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 30)(20 31)(21 32)(22 33)(23 34)(24 35)(25 36)(26 28)(27 29)(37 53)(38 54)(39 46)(40 47)(41 48)(42 49)(43 50)(44 51)(45 52)
(1 29 41)(2 30 42)(3 31 43)(4 32 44)(5 33 45)(6 34 37)(7 35 38)(8 36 39)(9 28 40)(10 23 53)(11 24 54)(12 25 46)(13 26 47)(14 27 48)(15 19 49)(16 20 50)(17 21 51)(18 22 52)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)
(2 42 33)(3 31 40)(5 45 36)(6 34 43)(8 39 30)(9 28 37)(10 23 50)(12 46 19)(13 26 53)(15 49 22)(16 20 47)(18 52 25)(21 27 24)(29 35 32)(38 41 44)(48 51 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(2 9)(3 8)(4 7)(5 6)(10 18)(11 17)(12 16)(13 15)(19 47)(20 46)(21 54)(22 53)(23 52)(24 51)(25 50)(26 49)(27 48)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 45)(35 44)(36 43)
G:=sub<Sym(54)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(25,36)(26,28)(27,29)(37,53)(38,54)(39,46)(40,47)(41,48)(42,49)(43,50)(44,51)(45,52), (1,29,41)(2,30,42)(3,31,43)(4,32,44)(5,33,45)(6,34,37)(7,35,38)(8,36,39)(9,28,40)(10,23,53)(11,24,54)(12,25,46)(13,26,47)(14,27,48)(15,19,49)(16,20,50)(17,21,51)(18,22,52), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (2,42,33)(3,31,40)(5,45,36)(6,34,43)(8,39,30)(9,28,37)(10,23,50)(12,46,19)(13,26,53)(15,49,22)(16,20,47)(18,52,25)(21,27,24)(29,35,32)(38,41,44)(48,51,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,9)(3,8)(4,7)(5,6)(10,18)(11,17)(12,16)(13,15)(19,47)(20,46)(21,54)(22,53)(23,52)(24,51)(25,50)(26,49)(27,48)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,45)(35,44)(36,43)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(25,36)(26,28)(27,29)(37,53)(38,54)(39,46)(40,47)(41,48)(42,49)(43,50)(44,51)(45,52), (1,29,41)(2,30,42)(3,31,43)(4,32,44)(5,33,45)(6,34,37)(7,35,38)(8,36,39)(9,28,40)(10,23,53)(11,24,54)(12,25,46)(13,26,47)(14,27,48)(15,19,49)(16,20,50)(17,21,51)(18,22,52), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51), (2,42,33)(3,31,40)(5,45,36)(6,34,43)(8,39,30)(9,28,37)(10,23,50)(12,46,19)(13,26,53)(15,49,22)(16,20,47)(18,52,25)(21,27,24)(29,35,32)(38,41,44)(48,51,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (2,9)(3,8)(4,7)(5,6)(10,18)(11,17)(12,16)(13,15)(19,47)(20,46)(21,54)(22,53)(23,52)(24,51)(25,50)(26,49)(27,48)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,45)(35,44)(36,43) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,30),(20,31),(21,32),(22,33),(23,34),(24,35),(25,36),(26,28),(27,29),(37,53),(38,54),(39,46),(40,47),(41,48),(42,49),(43,50),(44,51),(45,52)], [(1,29,41),(2,30,42),(3,31,43),(4,32,44),(5,33,45),(6,34,37),(7,35,38),(8,36,39),(9,28,40),(10,23,53),(11,24,54),(12,25,46),(13,26,47),(14,27,48),(15,19,49),(16,20,50),(17,21,51),(18,22,52)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51)], [(2,42,33),(3,31,40),(5,45,36),(6,34,43),(8,39,30),(9,28,37),(10,23,50),(12,46,19),(13,26,53),(15,49,22),(16,20,47),(18,52,25),(21,27,24),(29,35,32),(38,41,44),(48,51,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(2,9),(3,8),(4,7),(5,6),(10,18),(11,17),(12,16),(13,15),(19,47),(20,46),(21,54),(22,53),(23,52),(24,51),(25,50),(26,49),(27,48),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,45),(35,44),(36,43)]])
Matrix representation of C2×He3.S3 ►in GL8(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 17 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 18 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 18 | 18 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 18 | 18 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 17 | 18 |
0 | 0 | 1 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 18 | 0 |
0 | 0 | 1 | 1 | 18 | 18 | 18 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 18 | 0 |
10 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 7 | 2 | 14 | 12 | 17 |
0 | 0 | 17 | 5 | 7 | 2 | 14 | 12 |
0 | 0 | 0 | 0 | 7 | 2 | 12 | 17 |
0 | 0 | 5 | 7 | 0 | 0 | 14 | 12 |
0 | 0 | 17 | 0 | 7 | 2 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 | 12 | 17 |
9 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 2 | 17 | 5 | 14 | 12 |
0 | 0 | 2 | 14 | 5 | 7 | 12 | 17 |
0 | 0 | 0 | 0 | 5 | 7 | 14 | 12 |
0 | 0 | 7 | 2 | 0 | 0 | 12 | 17 |
0 | 0 | 7 | 0 | 0 | 0 | 14 | 12 |
0 | 0 | 2 | 2 | 17 | 5 | 12 | 17 |
G:=sub<GL(8,GF(19))| [18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,18,17,18,18,18,18,0,0,1,18,0,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,18,18,0,18,0,0,0,1,0,0,1,0,1,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[7,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,18,17,18,18,18,18,0,0,1,18,0,0,0,0],[10,18,0,0,0,0,0,0,16,8,0,0,0,0,0,0,0,0,5,17,0,5,17,0,0,0,7,5,0,7,0,7,0,0,2,7,7,0,7,0,0,0,14,2,2,0,2,0,0,0,12,14,12,14,0,12,0,0,17,12,17,12,0,17],[9,5,0,0,0,0,0,0,3,10,0,0,0,0,0,0,0,0,7,2,0,7,7,2,0,0,2,14,0,2,0,2,0,0,17,5,5,0,0,17,0,0,5,7,7,0,0,5,0,0,14,12,14,12,14,12,0,0,12,17,12,17,12,17] >;
C2×He3.S3 in GAP, Magma, Sage, TeX
C_2\times {\rm He}_3.S_3
% in TeX
G:=Group("C2xHe3.S3");
// GroupNames label
G:=SmallGroup(324,71);
// by ID
G=gap.SmallGroup(324,71);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,5763,303,237,2164,1096,7781]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=f^2=1,e^3=f*c*f=c^-1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=b^-1*c*d,d*f=f*d,f*e*f=c*e^2>;
// generators/relations
Export
Subgroup lattice of C2×He3.S3 in TeX
Character table of C2×He3.S3 in TeX