Extensions 1→N→G→Q→1 with N=C6 and Q=C2×He3

Direct product G=N×Q with N=C6 and Q=C2×He3
dρLabelID
C2×C6×He3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C6 and Q=C2×He3
extensionφ:Q→Aut NdρLabelID
C6⋊(C2×He3) = C2×S3×He3φ: C2×He3/He3C2 ⊆ Aut C6366C6:(C2xHe3)324,139

Non-split extensions G=N.Q with N=C6 and Q=C2×He3
extensionφ:Q→Aut NdρLabelID
C6.(C2×He3) = Dic3×He3φ: C2×He3/He3C2 ⊆ Aut C6366C6.(C2xHe3)324,93
C6.2(C2×He3) = C4×C32⋊C9central extension (φ=1)108C6.2(C2xHe3)324,27
C6.3(C2×He3) = C4×C3≀C3central extension (φ=1)363C6.3(C2xHe3)324,31
C6.4(C2×He3) = C4×He3.C3central extension (φ=1)1083C6.4(C2xHe3)324,32
C6.5(C2×He3) = C4×He3⋊C3central extension (φ=1)1083C6.5(C2xHe3)324,33
C6.6(C2×He3) = C4×C3.He3central extension (φ=1)1083C6.6(C2xHe3)324,34
C6.7(C2×He3) = C22×C32⋊C9central extension (φ=1)108C6.7(C2xHe3)324,82
C6.8(C2×He3) = C22×C3≀C3central extension (φ=1)36C6.8(C2xHe3)324,86
C6.9(C2×He3) = C22×He3.C3central extension (φ=1)108C6.9(C2xHe3)324,87
C6.10(C2×He3) = C22×He3⋊C3central extension (φ=1)108C6.10(C2xHe3)324,88
C6.11(C2×He3) = C22×C3.He3central extension (φ=1)108C6.11(C2xHe3)324,89
C6.12(C2×He3) = C12×He3central extension (φ=1)108C6.12(C2xHe3)324,106

׿
×
𝔽