Copied to
clipboard

G = C4×C3.He3order 324 = 22·34

Direct product of C4 and C3.He3

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C4×C3.He3, C12.5He3, 3- 1+2.C12, (C3×C9).3C12, (C3×C36).1C3, C6.6(C2×He3), C3.5(C4×He3), (C3×C18).14C6, C32.4(C3×C12), (C3×C12).4C32, (C4×3- 1+2).C3, (C2×3- 1+2).3C6, (C3×C6).5(C3×C6), C2.(C2×C3.He3), (C2×C3.He3).2C2, SmallGroup(324,34)

Series: Derived Chief Lower central Upper central

C1C32 — C4×C3.He3
C1C3C32C3×C6C3×C18C2×C3.He3 — C4×C3.He3
C1C3C32 — C4×C3.He3
C1C12C3×C12 — C4×C3.He3

Generators and relations for C4×C3.He3
 G = < a,b,c,d,e | a4=b3=d3=1, c3=b-1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=bcd-1, ede-1=b-1d >

3C3
3C6
3C9
3C9
3C9
3C9
3C12
3C18
3C18
3C18
3C18
3C36
3C36
3C36
3C36

Smallest permutation representation of C4×C3.He3
On 108 points
Generators in S108
(1 81 27 67)(2 73 19 68)(3 74 20 69)(4 75 21 70)(5 76 22 71)(6 77 23 72)(7 78 24 64)(8 79 25 65)(9 80 26 66)(10 63 100 46)(11 55 101 47)(12 56 102 48)(13 57 103 49)(14 58 104 50)(15 59 105 51)(16 60 106 52)(17 61 107 53)(18 62 108 54)(28 97 43 82)(29 98 44 83)(30 99 45 84)(31 91 37 85)(32 92 38 86)(33 93 39 87)(34 94 40 88)(35 95 41 89)(36 96 42 90)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(100 106 103)(101 107 104)(102 108 105)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)
(10 13 16)(11 14 17)(12 15 18)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(100 103 106)(101 104 107)(102 105 108)
(1 49 28 7 46 34 4 52 31)(2 53 29 8 50 35 5 47 32)(3 48 30 9 54 36 6 51 33)(10 94 75 16 91 81 13 97 78)(11 92 73 17 98 79 14 95 76)(12 99 80 18 96 77 15 93 74)(19 61 44 25 58 41 22 55 38)(20 56 45 26 62 42 23 59 39)(21 60 37 27 57 43 24 63 40)(64 100 88 70 106 85 67 103 82)(65 104 89 71 101 86 68 107 83)(66 108 90 72 105 87 69 102 84)

G:=sub<Sym(108)| (1,81,27,67)(2,73,19,68)(3,74,20,69)(4,75,21,70)(5,76,22,71)(6,77,23,72)(7,78,24,64)(8,79,25,65)(9,80,26,66)(10,63,100,46)(11,55,101,47)(12,56,102,48)(13,57,103,49)(14,58,104,50)(15,59,105,51)(16,60,106,52)(17,61,107,53)(18,62,108,54)(28,97,43,82)(29,98,44,83)(30,99,45,84)(31,91,37,85)(32,92,38,86)(33,93,39,87)(34,94,40,88)(35,95,41,89)(36,96,42,90), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (10,13,16)(11,14,17)(12,15,18)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,103,106)(101,104,107)(102,105,108), (1,49,28,7,46,34,4,52,31)(2,53,29,8,50,35,5,47,32)(3,48,30,9,54,36,6,51,33)(10,94,75,16,91,81,13,97,78)(11,92,73,17,98,79,14,95,76)(12,99,80,18,96,77,15,93,74)(19,61,44,25,58,41,22,55,38)(20,56,45,26,62,42,23,59,39)(21,60,37,27,57,43,24,63,40)(64,100,88,70,106,85,67,103,82)(65,104,89,71,101,86,68,107,83)(66,108,90,72,105,87,69,102,84)>;

G:=Group( (1,81,27,67)(2,73,19,68)(3,74,20,69)(4,75,21,70)(5,76,22,71)(6,77,23,72)(7,78,24,64)(8,79,25,65)(9,80,26,66)(10,63,100,46)(11,55,101,47)(12,56,102,48)(13,57,103,49)(14,58,104,50)(15,59,105,51)(16,60,106,52)(17,61,107,53)(18,62,108,54)(28,97,43,82)(29,98,44,83)(30,99,45,84)(31,91,37,85)(32,92,38,86)(33,93,39,87)(34,94,40,88)(35,95,41,89)(36,96,42,90), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (10,13,16)(11,14,17)(12,15,18)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,103,106)(101,104,107)(102,105,108), (1,49,28,7,46,34,4,52,31)(2,53,29,8,50,35,5,47,32)(3,48,30,9,54,36,6,51,33)(10,94,75,16,91,81,13,97,78)(11,92,73,17,98,79,14,95,76)(12,99,80,18,96,77,15,93,74)(19,61,44,25,58,41,22,55,38)(20,56,45,26,62,42,23,59,39)(21,60,37,27,57,43,24,63,40)(64,100,88,70,106,85,67,103,82)(65,104,89,71,101,86,68,107,83)(66,108,90,72,105,87,69,102,84) );

G=PermutationGroup([[(1,81,27,67),(2,73,19,68),(3,74,20,69),(4,75,21,70),(5,76,22,71),(6,77,23,72),(7,78,24,64),(8,79,25,65),(9,80,26,66),(10,63,100,46),(11,55,101,47),(12,56,102,48),(13,57,103,49),(14,58,104,50),(15,59,105,51),(16,60,106,52),(17,61,107,53),(18,62,108,54),(28,97,43,82),(29,98,44,83),(30,99,45,84),(31,91,37,85),(32,92,38,86),(33,93,39,87),(34,94,40,88),(35,95,41,89),(36,96,42,90)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(100,106,103),(101,107,104),(102,108,105)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)], [(10,13,16),(11,14,17),(12,15,18),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(100,103,106),(101,104,107),(102,105,108)], [(1,49,28,7,46,34,4,52,31),(2,53,29,8,50,35,5,47,32),(3,48,30,9,54,36,6,51,33),(10,94,75,16,91,81,13,97,78),(11,92,73,17,98,79,14,95,76),(12,99,80,18,96,77,15,93,74),(19,61,44,25,58,41,22,55,38),(20,56,45,26,62,42,23,59,39),(21,60,37,27,57,43,24,63,40),(64,100,88,70,106,85,67,103,82),(65,104,89,71,101,86,68,107,83),(66,108,90,72,105,87,69,102,84)]])

68 conjugacy classes

class 1  2 3A3B3C3D4A4B6A6B6C6D9A···9F9G···9L12A12B12C12D12E12F12G12H18A···18F18G···18L36A···36L36M···36X
order1233334466669···99···9121212121212121218···1818···1836···3636···36
size1111331111333···39···9111133333···39···93···39···9

68 irreducible representations

dim111111111333333
type++
imageC1C2C3C3C4C6C6C12C12He3C2×He3C3.He3C4×He3C2×C3.He3C4×C3.He3
kernelC4×C3.He3C2×C3.He3C3×C36C4×3- 1+2C3.He3C3×C18C2×3- 1+2C3×C93- 1+2C12C6C4C3C2C1
# reps11262264122264612

Matrix representation of C4×C3.He3 in GL4(𝔽37) generated by

6000
03600
00360
00036
,
1000
02600
00260
00026
,
26000
0700
0070
00034
,
1000
0100
00260
00010
,
1000
0010
0001
02600
G:=sub<GL(4,GF(37))| [6,0,0,0,0,36,0,0,0,0,36,0,0,0,0,36],[1,0,0,0,0,26,0,0,0,0,26,0,0,0,0,26],[26,0,0,0,0,7,0,0,0,0,7,0,0,0,0,34],[1,0,0,0,0,1,0,0,0,0,26,0,0,0,0,10],[1,0,0,0,0,0,0,26,0,1,0,0,0,0,1,0] >;

C4×C3.He3 in GAP, Magma, Sage, TeX

C_4\times C_3.{\rm He}_3
% in TeX

G:=Group("C4xC3.He3");
// GroupNames label

G:=SmallGroup(324,34);
// by ID

G=gap.SmallGroup(324,34);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-3,-3,108,655,386,662,2170]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=d^3=1,c^3=b^-1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b*c*d^-1,e*d*e^-1=b^-1*d>;
// generators/relations

Export

Subgroup lattice of C4×C3.He3 in TeX

׿
×
𝔽