Copied to
clipboard

G = C12xHe3order 324 = 22·34

Direct product of C12 and He3

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C12xHe3, C33:8C12, C12.1C33, C2.(C6xHe3), (C3xC12):C32, (C32xC12):2C3, C32:3(C3xC12), (C6xHe3).6C2, C6.2(C32xC6), C6.12(C2xHe3), (C2xHe3).14C6, (C32xC6).12C6, C3.1(C32xC12), (C3xC6).10(C3xC6), SmallGroup(324,106)

Series: Derived Chief Lower central Upper central

C1C3 — C12xHe3
C1C3C6C3xC6C32xC6C6xHe3 — C12xHe3
C1C3 — C12xHe3
C1C3xC12 — C12xHe3

Generators and relations for C12xHe3
 G = < a,b,c,d | a12=b3=c3=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, cd=dc >

Subgroups: 312 in 168 conjugacy classes, 96 normal (12 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C32, C32, C32, C12, C12, C12, C3xC6, C3xC6, C3xC6, He3, C33, C3xC12, C3xC12, C3xC12, C2xHe3, C32xC6, C3xHe3, C4xHe3, C32xC12, C6xHe3, C12xHe3
Quotients: C1, C2, C3, C4, C6, C32, C12, C3xC6, He3, C33, C3xC12, C2xHe3, C32xC6, C3xHe3, C4xHe3, C32xC12, C6xHe3, C12xHe3

Smallest permutation representation of C12xHe3
On 108 points
Generators in S108
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)
(1 29 55)(2 30 56)(3 31 57)(4 32 58)(5 33 59)(6 34 60)(7 35 49)(8 36 50)(9 25 51)(10 26 52)(11 27 53)(12 28 54)(13 83 37)(14 84 38)(15 73 39)(16 74 40)(17 75 41)(18 76 42)(19 77 43)(20 78 44)(21 79 45)(22 80 46)(23 81 47)(24 82 48)(61 65 69)(62 66 70)(63 67 71)(64 68 72)(85 89 93)(86 90 94)(87 91 95)(88 92 96)(97 101 105)(98 102 106)(99 103 107)(100 104 108)
(1 25 59)(2 26 60)(3 27 49)(4 28 50)(5 29 51)(6 30 52)(7 31 53)(8 32 54)(9 33 55)(10 34 56)(11 35 57)(12 36 58)(13 41 79)(14 42 80)(15 43 81)(16 44 82)(17 45 83)(18 46 84)(19 47 73)(20 48 74)(21 37 75)(22 38 76)(23 39 77)(24 40 78)(61 103 88)(62 104 89)(63 105 90)(64 106 91)(65 107 92)(66 108 93)(67 97 94)(68 98 95)(69 99 96)(70 100 85)(71 101 86)(72 102 87)
(1 86 84)(2 87 73)(3 88 74)(4 89 75)(5 90 76)(6 91 77)(7 92 78)(8 93 79)(9 94 80)(10 95 81)(11 96 82)(12 85 83)(13 32 66)(14 33 67)(15 34 68)(16 35 69)(17 36 70)(18 25 71)(19 26 72)(20 27 61)(21 28 62)(22 29 63)(23 30 64)(24 31 65)(37 50 104)(38 51 105)(39 52 106)(40 53 107)(41 54 108)(42 55 97)(43 56 98)(44 57 99)(45 58 100)(46 59 101)(47 60 102)(48 49 103)

G:=sub<Sym(108)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108), (1,29,55)(2,30,56)(3,31,57)(4,32,58)(5,33,59)(6,34,60)(7,35,49)(8,36,50)(9,25,51)(10,26,52)(11,27,53)(12,28,54)(13,83,37)(14,84,38)(15,73,39)(16,74,40)(17,75,41)(18,76,42)(19,77,43)(20,78,44)(21,79,45)(22,80,46)(23,81,47)(24,82,48)(61,65,69)(62,66,70)(63,67,71)(64,68,72)(85,89,93)(86,90,94)(87,91,95)(88,92,96)(97,101,105)(98,102,106)(99,103,107)(100,104,108), (1,25,59)(2,26,60)(3,27,49)(4,28,50)(5,29,51)(6,30,52)(7,31,53)(8,32,54)(9,33,55)(10,34,56)(11,35,57)(12,36,58)(13,41,79)(14,42,80)(15,43,81)(16,44,82)(17,45,83)(18,46,84)(19,47,73)(20,48,74)(21,37,75)(22,38,76)(23,39,77)(24,40,78)(61,103,88)(62,104,89)(63,105,90)(64,106,91)(65,107,92)(66,108,93)(67,97,94)(68,98,95)(69,99,96)(70,100,85)(71,101,86)(72,102,87), (1,86,84)(2,87,73)(3,88,74)(4,89,75)(5,90,76)(6,91,77)(7,92,78)(8,93,79)(9,94,80)(10,95,81)(11,96,82)(12,85,83)(13,32,66)(14,33,67)(15,34,68)(16,35,69)(17,36,70)(18,25,71)(19,26,72)(20,27,61)(21,28,62)(22,29,63)(23,30,64)(24,31,65)(37,50,104)(38,51,105)(39,52,106)(40,53,107)(41,54,108)(42,55,97)(43,56,98)(44,57,99)(45,58,100)(46,59,101)(47,60,102)(48,49,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108), (1,29,55)(2,30,56)(3,31,57)(4,32,58)(5,33,59)(6,34,60)(7,35,49)(8,36,50)(9,25,51)(10,26,52)(11,27,53)(12,28,54)(13,83,37)(14,84,38)(15,73,39)(16,74,40)(17,75,41)(18,76,42)(19,77,43)(20,78,44)(21,79,45)(22,80,46)(23,81,47)(24,82,48)(61,65,69)(62,66,70)(63,67,71)(64,68,72)(85,89,93)(86,90,94)(87,91,95)(88,92,96)(97,101,105)(98,102,106)(99,103,107)(100,104,108), (1,25,59)(2,26,60)(3,27,49)(4,28,50)(5,29,51)(6,30,52)(7,31,53)(8,32,54)(9,33,55)(10,34,56)(11,35,57)(12,36,58)(13,41,79)(14,42,80)(15,43,81)(16,44,82)(17,45,83)(18,46,84)(19,47,73)(20,48,74)(21,37,75)(22,38,76)(23,39,77)(24,40,78)(61,103,88)(62,104,89)(63,105,90)(64,106,91)(65,107,92)(66,108,93)(67,97,94)(68,98,95)(69,99,96)(70,100,85)(71,101,86)(72,102,87), (1,86,84)(2,87,73)(3,88,74)(4,89,75)(5,90,76)(6,91,77)(7,92,78)(8,93,79)(9,94,80)(10,95,81)(11,96,82)(12,85,83)(13,32,66)(14,33,67)(15,34,68)(16,35,69)(17,36,70)(18,25,71)(19,26,72)(20,27,61)(21,28,62)(22,29,63)(23,30,64)(24,31,65)(37,50,104)(38,51,105)(39,52,106)(40,53,107)(41,54,108)(42,55,97)(43,56,98)(44,57,99)(45,58,100)(46,59,101)(47,60,102)(48,49,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108)], [(1,29,55),(2,30,56),(3,31,57),(4,32,58),(5,33,59),(6,34,60),(7,35,49),(8,36,50),(9,25,51),(10,26,52),(11,27,53),(12,28,54),(13,83,37),(14,84,38),(15,73,39),(16,74,40),(17,75,41),(18,76,42),(19,77,43),(20,78,44),(21,79,45),(22,80,46),(23,81,47),(24,82,48),(61,65,69),(62,66,70),(63,67,71),(64,68,72),(85,89,93),(86,90,94),(87,91,95),(88,92,96),(97,101,105),(98,102,106),(99,103,107),(100,104,108)], [(1,25,59),(2,26,60),(3,27,49),(4,28,50),(5,29,51),(6,30,52),(7,31,53),(8,32,54),(9,33,55),(10,34,56),(11,35,57),(12,36,58),(13,41,79),(14,42,80),(15,43,81),(16,44,82),(17,45,83),(18,46,84),(19,47,73),(20,48,74),(21,37,75),(22,38,76),(23,39,77),(24,40,78),(61,103,88),(62,104,89),(63,105,90),(64,106,91),(65,107,92),(66,108,93),(67,97,94),(68,98,95),(69,99,96),(70,100,85),(71,101,86),(72,102,87)], [(1,86,84),(2,87,73),(3,88,74),(4,89,75),(5,90,76),(6,91,77),(7,92,78),(8,93,79),(9,94,80),(10,95,81),(11,96,82),(12,85,83),(13,32,66),(14,33,67),(15,34,68),(16,35,69),(17,36,70),(18,25,71),(19,26,72),(20,27,61),(21,28,62),(22,29,63),(23,30,64),(24,31,65),(37,50,104),(38,51,105),(39,52,106),(40,53,107),(41,54,108),(42,55,97),(43,56,98),(44,57,99),(45,58,100),(46,59,101),(47,60,102),(48,49,103)]])

132 conjugacy classes

class 1  2 3A···3H3I···3AF4A4B6A···6H6I···6AF12A···12P12Q···12BL
order123···33···3446···66···612···1212···12
size111···13···3111···13···31···13···3

132 irreducible representations

dim111111111333
type++
imageC1C2C3C3C4C6C6C12C12He3C2xHe3C4xHe3
kernelC12xHe3C6xHe3C4xHe3C32xC12C3xHe3C2xHe3C32xC6He3C33C12C6C3
# reps11188218836166612

Matrix representation of C12xHe3 in GL4(F13) generated by

9000
0500
0050
0005
,
3000
03125
0090
0001
,
1000
0300
0030
0003
,
3000
05512
0003
01148
G:=sub<GL(4,GF(13))| [9,0,0,0,0,5,0,0,0,0,5,0,0,0,0,5],[3,0,0,0,0,3,0,0,0,12,9,0,0,5,0,1],[1,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[3,0,0,0,0,5,0,11,0,5,0,4,0,12,3,8] >;

C12xHe3 in GAP, Magma, Sage, TeX

C_{12}\times {\rm He}_3
% in TeX

G:=Group("C12xHe3");
// GroupNames label

G:=SmallGroup(324,106);
// by ID

G=gap.SmallGroup(324,106);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,-3,324,1034]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^3=c^3=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<