Extensions 1→N→G→Q→1 with N=C2xHe3 and Q=C6

Direct product G=NxQ with N=C2xHe3 and Q=C6
dρLabelID
C2xC6xHe3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C2xHe3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xHe3):C6 = C2xC3wrS3φ: C6/C1C6 ⊆ Out C2xHe3183(C2xHe3):C6324,68
(C2xHe3):2C6 = C22xC3wrC3φ: C6/C2C3 ⊆ Out C2xHe336(C2xHe3):2C6324,86
(C2xHe3):3C6 = C22xHe3:C3φ: C6/C2C3 ⊆ Out C2xHe3108(C2xHe3):3C6324,88
(C2xHe3):4C6 = C6xC32:C6φ: C6/C3C2 ⊆ Out C2xHe3366(C2xHe3):4C6324,138
(C2xHe3):5C6 = C6xHe3:C2φ: C6/C3C2 ⊆ Out C2xHe354(C2xHe3):5C6324,145

Non-split extensions G=N.Q with N=C2xHe3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xHe3).1C6 = He3:C12φ: C6/C1C6 ⊆ Out C2xHe3363(C2xHe3).1C6324,13
(C2xHe3).2C6 = He3.C12φ: C6/C1C6 ⊆ Out C2xHe31083(C2xHe3).2C6324,15
(C2xHe3).3C6 = He3.2C12φ: C6/C1C6 ⊆ Out C2xHe31083(C2xHe3).3C6324,17
(C2xHe3).4C6 = C2xHe3.C6φ: C6/C1C6 ⊆ Out C2xHe3543(C2xHe3).4C6324,70
(C2xHe3).5C6 = C2xHe3.2C6φ: C6/C1C6 ⊆ Out C2xHe3543(C2xHe3).5C6324,72
(C2xHe3).6C6 = C4xC3wrC3φ: C6/C2C3 ⊆ Out C2xHe3363(C2xHe3).6C6324,31
(C2xHe3).7C6 = C4xHe3.C3φ: C6/C2C3 ⊆ Out C2xHe31083(C2xHe3).7C6324,32
(C2xHe3).8C6 = C4xHe3:C3φ: C6/C2C3 ⊆ Out C2xHe31083(C2xHe3).8C6324,33
(C2xHe3).9C6 = C22xHe3.C3φ: C6/C2C3 ⊆ Out C2xHe3108(C2xHe3).9C6324,87
(C2xHe3).10C6 = C3xC32:C12φ: C6/C3C2 ⊆ Out C2xHe3366(C2xHe3).10C6324,92
(C2xHe3).11C6 = C3xHe3:3C4φ: C6/C3C2 ⊆ Out C2xHe3108(C2xHe3).11C6324,99
(C2xHe3).12C6 = He3.5C12φ: C6/C3C2 ⊆ Out C2xHe31083(C2xHe3).12C6324,102
(C2xHe3).13C6 = C2xHe3.4C6φ: C6/C3C2 ⊆ Out C2xHe3543(C2xHe3).13C6324,148
(C2xHe3).14C6 = C12xHe3φ: trivial image108(C2xHe3).14C6324,106
(C2xHe3).15C6 = C4xC9oHe3φ: trivial image1083(C2xHe3).15C6324,108
(C2xHe3).16C6 = C22xC9oHe3φ: trivial image108(C2xHe3).16C6324,154

׿
x
:
Z
F
o
wr
Q
<