Extensions 1→N→G→Q→1 with N=C3 and Q=He33C4

Direct product G=N×Q with N=C3 and Q=He33C4
dρLabelID
C3×He33C4108C3xHe3:3C4324,99

Semidirect products G=N:Q with N=C3 and Q=He33C4
extensionφ:Q→Aut NdρLabelID
C3⋊(He33C4) = He36Dic3φ: He33C4/C2×He3C2 ⊆ Aut C3366C3:(He3:3C4)324,104

Non-split extensions G=N.Q with N=C3 and Q=He33C4
extensionφ:Q→Aut NdρLabelID
C3.1(He33C4) = C322Dic9φ: He33C4/C2×He3C2 ⊆ Aut C3366C3.1(He3:3C4)324,20
C3.2(He33C4) = C33⋊Dic3φ: He33C4/C2×He3C2 ⊆ Aut C3366-C3.2(He3:3C4)324,22
C3.3(He33C4) = He3.3Dic3φ: He33C4/C2×He3C2 ⊆ Aut C31086-C3.3(He3:3C4)324,23
C3.4(He33C4) = He3⋊Dic3φ: He33C4/C2×He3C2 ⊆ Aut C31086-C3.4(He3:3C4)324,24
C3.5(He33C4) = 3- 1+2.Dic3φ: He33C4/C2×He3C2 ⊆ Aut C31086-C3.5(He3:3C4)324,25

׿
×
𝔽