Extensions 1→N→G→Q→1 with N=C4 and Q=C6×D7

Direct product G=N×Q with N=C4 and Q=C6×D7
dρLabelID
D7×C2×C12168D7xC2xC12336,175

Semidirect products G=N:Q with N=C4 and Q=C6×D7
extensionφ:Q→Aut NdρLabelID
C41(C6×D7) = C3×D4×D7φ: C6×D7/C3×D7C2 ⊆ Aut C4844C4:1(C6xD7)336,178
C42(C6×D7) = C6×D28φ: C6×D7/C42C2 ⊆ Aut C4168C4:2(C6xD7)336,176

Non-split extensions G=N.Q with N=C4 and Q=C6×D7
extensionφ:Q→Aut NdρLabelID
C4.1(C6×D7) = C3×D4⋊D7φ: C6×D7/C3×D7C2 ⊆ Aut C41684C4.1(C6xD7)336,69
C4.2(C6×D7) = C3×D4.D7φ: C6×D7/C3×D7C2 ⊆ Aut C41684C4.2(C6xD7)336,70
C4.3(C6×D7) = C3×Q8⋊D7φ: C6×D7/C3×D7C2 ⊆ Aut C41684C4.3(C6xD7)336,71
C4.4(C6×D7) = C3×C7⋊Q16φ: C6×D7/C3×D7C2 ⊆ Aut C43364C4.4(C6xD7)336,72
C4.5(C6×D7) = C3×D42D7φ: C6×D7/C3×D7C2 ⊆ Aut C41684C4.5(C6xD7)336,179
C4.6(C6×D7) = C3×Q8×D7φ: C6×D7/C3×D7C2 ⊆ Aut C41684C4.6(C6xD7)336,180
C4.7(C6×D7) = C3×Q82D7φ: C6×D7/C3×D7C2 ⊆ Aut C41684C4.7(C6xD7)336,181
C4.8(C6×D7) = C3×C56⋊C2φ: C6×D7/C42C2 ⊆ Aut C41682C4.8(C6xD7)336,60
C4.9(C6×D7) = C3×D56φ: C6×D7/C42C2 ⊆ Aut C41682C4.9(C6xD7)336,61
C4.10(C6×D7) = C3×Dic28φ: C6×D7/C42C2 ⊆ Aut C43362C4.10(C6xD7)336,62
C4.11(C6×D7) = C6×Dic14φ: C6×D7/C42C2 ⊆ Aut C4336C4.11(C6xD7)336,174
C4.12(C6×D7) = D7×C24central extension (φ=1)1682C4.12(C6xD7)336,58
C4.13(C6×D7) = C3×C8⋊D7central extension (φ=1)1682C4.13(C6xD7)336,59
C4.14(C6×D7) = C6×C7⋊C8central extension (φ=1)336C4.14(C6xD7)336,63
C4.15(C6×D7) = C3×C4.Dic7central extension (φ=1)1682C4.15(C6xD7)336,64
C4.16(C6×D7) = C3×C4○D28central extension (φ=1)1682C4.16(C6xD7)336,177

׿
×
𝔽