Copied to
clipboard

G = C3×D56order 336 = 24·3·7

Direct product of C3 and D56

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D56, C215D8, C569C6, C243D7, C1683C2, D287C6, C6.14D28, C42.24D4, C12.53D14, C84.60C22, C74(C3×D8), C81(C3×D7), C4.9(C6×D7), (C3×D28)⋊7C2, C2.4(C3×D28), C28.32(C2×C6), C14.18(C3×D4), SmallGroup(336,61)

Series: Derived Chief Lower central Upper central

C1C28 — C3×D56
C1C7C14C28C84C3×D28 — C3×D56
C7C14C28 — C3×D56
C1C6C12C24

Generators and relations for C3×D56
 G = < a,b,c | a3=b56=c2=1, ab=ba, ac=ca, cbc=b-1 >

28C2
28C2
14C22
14C22
28C6
28C6
4D7
4D7
7D4
7D4
14C2×C6
14C2×C6
2D14
2D14
4C3×D7
4C3×D7
7D8
7C3×D4
7C3×D4
2C6×D7
2C6×D7
7C3×D8

Smallest permutation representation of C3×D56
On 168 points
Generators in S168
(1 116 110)(2 117 111)(3 118 112)(4 119 57)(5 120 58)(6 121 59)(7 122 60)(8 123 61)(9 124 62)(10 125 63)(11 126 64)(12 127 65)(13 128 66)(14 129 67)(15 130 68)(16 131 69)(17 132 70)(18 133 71)(19 134 72)(20 135 73)(21 136 74)(22 137 75)(23 138 76)(24 139 77)(25 140 78)(26 141 79)(27 142 80)(28 143 81)(29 144 82)(30 145 83)(31 146 84)(32 147 85)(33 148 86)(34 149 87)(35 150 88)(36 151 89)(37 152 90)(38 153 91)(39 154 92)(40 155 93)(41 156 94)(42 157 95)(43 158 96)(44 159 97)(45 160 98)(46 161 99)(47 162 100)(48 163 101)(49 164 102)(50 165 103)(51 166 104)(52 167 105)(53 168 106)(54 113 107)(55 114 108)(56 115 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 56)(2 55)(3 54)(4 53)(5 52)(6 51)(7 50)(8 49)(9 48)(10 47)(11 46)(12 45)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(57 106)(58 105)(59 104)(60 103)(61 102)(62 101)(63 100)(64 99)(65 98)(66 97)(67 96)(68 95)(69 94)(70 93)(71 92)(72 91)(73 90)(74 89)(75 88)(76 87)(77 86)(78 85)(79 84)(80 83)(81 82)(107 112)(108 111)(109 110)(113 118)(114 117)(115 116)(119 168)(120 167)(121 166)(122 165)(123 164)(124 163)(125 162)(126 161)(127 160)(128 159)(129 158)(130 157)(131 156)(132 155)(133 154)(134 153)(135 152)(136 151)(137 150)(138 149)(139 148)(140 147)(141 146)(142 145)(143 144)

G:=sub<Sym(168)| (1,116,110)(2,117,111)(3,118,112)(4,119,57)(5,120,58)(6,121,59)(7,122,60)(8,123,61)(9,124,62)(10,125,63)(11,126,64)(12,127,65)(13,128,66)(14,129,67)(15,130,68)(16,131,69)(17,132,70)(18,133,71)(19,134,72)(20,135,73)(21,136,74)(22,137,75)(23,138,76)(24,139,77)(25,140,78)(26,141,79)(27,142,80)(28,143,81)(29,144,82)(30,145,83)(31,146,84)(32,147,85)(33,148,86)(34,149,87)(35,150,88)(36,151,89)(37,152,90)(38,153,91)(39,154,92)(40,155,93)(41,156,94)(42,157,95)(43,158,96)(44,159,97)(45,160,98)(46,161,99)(47,162,100)(48,163,101)(49,164,102)(50,165,103)(51,166,104)(52,167,105)(53,168,106)(54,113,107)(55,114,108)(56,115,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(57,106)(58,105)(59,104)(60,103)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,84)(80,83)(81,82)(107,112)(108,111)(109,110)(113,118)(114,117)(115,116)(119,168)(120,167)(121,166)(122,165)(123,164)(124,163)(125,162)(126,161)(127,160)(128,159)(129,158)(130,157)(131,156)(132,155)(133,154)(134,153)(135,152)(136,151)(137,150)(138,149)(139,148)(140,147)(141,146)(142,145)(143,144)>;

G:=Group( (1,116,110)(2,117,111)(3,118,112)(4,119,57)(5,120,58)(6,121,59)(7,122,60)(8,123,61)(9,124,62)(10,125,63)(11,126,64)(12,127,65)(13,128,66)(14,129,67)(15,130,68)(16,131,69)(17,132,70)(18,133,71)(19,134,72)(20,135,73)(21,136,74)(22,137,75)(23,138,76)(24,139,77)(25,140,78)(26,141,79)(27,142,80)(28,143,81)(29,144,82)(30,145,83)(31,146,84)(32,147,85)(33,148,86)(34,149,87)(35,150,88)(36,151,89)(37,152,90)(38,153,91)(39,154,92)(40,155,93)(41,156,94)(42,157,95)(43,158,96)(44,159,97)(45,160,98)(46,161,99)(47,162,100)(48,163,101)(49,164,102)(50,165,103)(51,166,104)(52,167,105)(53,168,106)(54,113,107)(55,114,108)(56,115,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,56)(2,55)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(57,106)(58,105)(59,104)(60,103)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,84)(80,83)(81,82)(107,112)(108,111)(109,110)(113,118)(114,117)(115,116)(119,168)(120,167)(121,166)(122,165)(123,164)(124,163)(125,162)(126,161)(127,160)(128,159)(129,158)(130,157)(131,156)(132,155)(133,154)(134,153)(135,152)(136,151)(137,150)(138,149)(139,148)(140,147)(141,146)(142,145)(143,144) );

G=PermutationGroup([[(1,116,110),(2,117,111),(3,118,112),(4,119,57),(5,120,58),(6,121,59),(7,122,60),(8,123,61),(9,124,62),(10,125,63),(11,126,64),(12,127,65),(13,128,66),(14,129,67),(15,130,68),(16,131,69),(17,132,70),(18,133,71),(19,134,72),(20,135,73),(21,136,74),(22,137,75),(23,138,76),(24,139,77),(25,140,78),(26,141,79),(27,142,80),(28,143,81),(29,144,82),(30,145,83),(31,146,84),(32,147,85),(33,148,86),(34,149,87),(35,150,88),(36,151,89),(37,152,90),(38,153,91),(39,154,92),(40,155,93),(41,156,94),(42,157,95),(43,158,96),(44,159,97),(45,160,98),(46,161,99),(47,162,100),(48,163,101),(49,164,102),(50,165,103),(51,166,104),(52,167,105),(53,168,106),(54,113,107),(55,114,108),(56,115,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,56),(2,55),(3,54),(4,53),(5,52),(6,51),(7,50),(8,49),(9,48),(10,47),(11,46),(12,45),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(57,106),(58,105),(59,104),(60,103),(61,102),(62,101),(63,100),(64,99),(65,98),(66,97),(67,96),(68,95),(69,94),(70,93),(71,92),(72,91),(73,90),(74,89),(75,88),(76,87),(77,86),(78,85),(79,84),(80,83),(81,82),(107,112),(108,111),(109,110),(113,118),(114,117),(115,116),(119,168),(120,167),(121,166),(122,165),(123,164),(124,163),(125,162),(126,161),(127,160),(128,159),(129,158),(130,157),(131,156),(132,155),(133,154),(134,153),(135,152),(136,151),(137,150),(138,149),(139,148),(140,147),(141,146),(142,145),(143,144)]])

93 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F7A7B7C8A8B12A12B14A14B14C21A···21F24A24B24C24D28A···28F42A···42F56A···56L84A···84L168A···168X
order122233466666677788121214141421···212424242428···2842···4256···5684···84168···168
size112828112112828282822222222222···222222···22···22···22···22···2

93 irreducible representations

dim111111222222222222
type+++++++++
imageC1C2C2C3C6C6D4D7D8C3×D4D14C3×D7C3×D8D28C6×D7D56C3×D28C3×D56
kernelC3×D56C168C3×D28D56C56D28C42C24C21C14C12C8C7C6C4C3C2C1
# reps112224132236466121224

Matrix representation of C3×D56 in GL4(𝔽337) generated by

1000
0100
002080
000208
,
2991800
31917700
0032413
00324324
,
2991800
3133800
00324324
0032413
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,208,0,0,0,0,208],[299,319,0,0,18,177,0,0,0,0,324,324,0,0,13,324],[299,313,0,0,18,38,0,0,0,0,324,324,0,0,324,13] >;

C3×D56 in GAP, Magma, Sage, TeX

C_3\times D_{56}
% in TeX

G:=Group("C3xD56");
// GroupNames label

G:=SmallGroup(336,61);
// by ID

G=gap.SmallGroup(336,61);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,169,223,867,69,10373]);
// Polycyclic

G:=Group<a,b,c|a^3=b^56=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3×D56 in TeX

׿
×
𝔽