Extensions 1→N→G→Q→1 with N=C3 and Q=C4×He3

Direct product G=N×Q with N=C3 and Q=C4×He3
dρLabelID
C12×He3108C12xHe3324,106

Semidirect products G=N:Q with N=C3 and Q=C4×He3
extensionφ:Q→Aut NdρLabelID
C3⋊(C4×He3) = Dic3×He3φ: C4×He3/C2×He3C2 ⊆ Aut C3366C3:(C4xHe3)324,93

Non-split extensions G=N.Q with N=C3 and Q=C4×He3
extensionφ:Q→Aut NdρLabelID
C3.1(C4×He3) = C4×C32⋊C9central extension (φ=1)108C3.1(C4xHe3)324,27
C3.2(C4×He3) = C4×C3≀C3central stem extension (φ=1)363C3.2(C4xHe3)324,31
C3.3(C4×He3) = C4×He3.C3central stem extension (φ=1)1083C3.3(C4xHe3)324,32
C3.4(C4×He3) = C4×He3⋊C3central stem extension (φ=1)1083C3.4(C4xHe3)324,33
C3.5(C4×He3) = C4×C3.He3central stem extension (φ=1)1083C3.5(C4xHe3)324,34

׿
×
𝔽