Extensions 1→N→G→Q→1 with N=C6 and Q=C3×C3⋊S3

Direct product G=N×Q with N=C6 and Q=C3×C3⋊S3
dρLabelID
C3⋊S3×C3×C636C3:S3xC3xC6324,173

Semidirect products G=N:Q with N=C6 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C6⋊(C3×C3⋊S3) = C6×C33⋊C2φ: C3×C3⋊S3/C33C2 ⊆ Aut C6108C6:(C3xC3:S3)324,174

Non-split extensions G=N.Q with N=C6 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C6.1(C3×C3⋊S3) = C3×C9⋊Dic3φ: C3×C3⋊S3/C33C2 ⊆ Aut C6108C6.1(C3xC3:S3)324,96
C6.2(C3×C3⋊S3) = C334C12φ: C3×C3⋊S3/C33C2 ⊆ Aut C6108C6.2(C3xC3:S3)324,98
C6.3(C3×C3⋊S3) = C33.Dic3φ: C3×C3⋊S3/C33C2 ⊆ Aut C6108C6.3(C3xC3:S3)324,100
C6.4(C3×C3⋊S3) = He3.4Dic3φ: C3×C3⋊S3/C33C2 ⊆ Aut C61086-C6.4(C3xC3:S3)324,101
C6.5(C3×C3⋊S3) = C6×C9⋊S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C6108C6.5(C3xC3:S3)324,142
C6.6(C3×C3⋊S3) = C2×He34S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C654C6.6(C3xC3:S3)324,144
C6.7(C3×C3⋊S3) = C2×C33.S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C654C6.7(C3xC3:S3)324,146
C6.8(C3×C3⋊S3) = C2×He3.4S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C6546+C6.8(C3xC3:S3)324,147
C6.9(C3×C3⋊S3) = C3×C335C4φ: C3×C3⋊S3/C33C2 ⊆ Aut C6108C6.9(C3xC3:S3)324,157
C6.10(C3×C3⋊S3) = C9×C3⋊Dic3central extension (φ=1)108C6.10(C3xC3:S3)324,97
C6.11(C3×C3⋊S3) = C3×He33C4central extension (φ=1)108C6.11(C3xC3:S3)324,99
C6.12(C3×C3⋊S3) = He3.5C12central extension (φ=1)1083C6.12(C3xC3:S3)324,102
C6.13(C3×C3⋊S3) = C18×C3⋊S3central extension (φ=1)108C6.13(C3xC3:S3)324,143
C6.14(C3×C3⋊S3) = C6×He3⋊C2central extension (φ=1)54C6.14(C3xC3:S3)324,145
C6.15(C3×C3⋊S3) = C2×He3.4C6central extension (φ=1)543C6.15(C3xC3:S3)324,148
C6.16(C3×C3⋊S3) = C32×C3⋊Dic3central extension (φ=1)36C6.16(C3xC3:S3)324,156

׿
×
𝔽