Extensions 1→N→G→Q→1 with N=C6 and Q=C3xC3:S3

Direct product G=NxQ with N=C6 and Q=C3xC3:S3
dρLabelID
C3:S3xC3xC636C3:S3xC3xC6324,173

Semidirect products G=N:Q with N=C6 and Q=C3xC3:S3
extensionφ:Q→Aut NdρLabelID
C6:(C3xC3:S3) = C6xC33:C2φ: C3xC3:S3/C33C2 ⊆ Aut C6108C6:(C3xC3:S3)324,174

Non-split extensions G=N.Q with N=C6 and Q=C3xC3:S3
extensionφ:Q→Aut NdρLabelID
C6.1(C3xC3:S3) = C3xC9:Dic3φ: C3xC3:S3/C33C2 ⊆ Aut C6108C6.1(C3xC3:S3)324,96
C6.2(C3xC3:S3) = C33:4C12φ: C3xC3:S3/C33C2 ⊆ Aut C6108C6.2(C3xC3:S3)324,98
C6.3(C3xC3:S3) = C33.Dic3φ: C3xC3:S3/C33C2 ⊆ Aut C6108C6.3(C3xC3:S3)324,100
C6.4(C3xC3:S3) = He3.4Dic3φ: C3xC3:S3/C33C2 ⊆ Aut C61086-C6.4(C3xC3:S3)324,101
C6.5(C3xC3:S3) = C6xC9:S3φ: C3xC3:S3/C33C2 ⊆ Aut C6108C6.5(C3xC3:S3)324,142
C6.6(C3xC3:S3) = C2xHe3:4S3φ: C3xC3:S3/C33C2 ⊆ Aut C654C6.6(C3xC3:S3)324,144
C6.7(C3xC3:S3) = C2xC33.S3φ: C3xC3:S3/C33C2 ⊆ Aut C654C6.7(C3xC3:S3)324,146
C6.8(C3xC3:S3) = C2xHe3.4S3φ: C3xC3:S3/C33C2 ⊆ Aut C6546+C6.8(C3xC3:S3)324,147
C6.9(C3xC3:S3) = C3xC33:5C4φ: C3xC3:S3/C33C2 ⊆ Aut C6108C6.9(C3xC3:S3)324,157
C6.10(C3xC3:S3) = C9xC3:Dic3central extension (φ=1)108C6.10(C3xC3:S3)324,97
C6.11(C3xC3:S3) = C3xHe3:3C4central extension (φ=1)108C6.11(C3xC3:S3)324,99
C6.12(C3xC3:S3) = He3.5C12central extension (φ=1)1083C6.12(C3xC3:S3)324,102
C6.13(C3xC3:S3) = C18xC3:S3central extension (φ=1)108C6.13(C3xC3:S3)324,143
C6.14(C3xC3:S3) = C6xHe3:C2central extension (φ=1)54C6.14(C3xC3:S3)324,145
C6.15(C3xC3:S3) = C2xHe3.4C6central extension (φ=1)543C6.15(C3xC3:S3)324,148
C6.16(C3xC3:S3) = C32xC3:Dic3central extension (φ=1)36C6.16(C3xC3:S3)324,156

׿
x
:
Z
F
o
wr
Q
<