extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3xC3:S3) = C3xC9:Dic3 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 108 | | C6.1(C3xC3:S3) | 324,96 |
C6.2(C3xC3:S3) = C33:4C12 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 108 | | C6.2(C3xC3:S3) | 324,98 |
C6.3(C3xC3:S3) = C33.Dic3 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 108 | | C6.3(C3xC3:S3) | 324,100 |
C6.4(C3xC3:S3) = He3.4Dic3 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 108 | 6- | C6.4(C3xC3:S3) | 324,101 |
C6.5(C3xC3:S3) = C6xC9:S3 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 108 | | C6.5(C3xC3:S3) | 324,142 |
C6.6(C3xC3:S3) = C2xHe3:4S3 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 54 | | C6.6(C3xC3:S3) | 324,144 |
C6.7(C3xC3:S3) = C2xC33.S3 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 54 | | C6.7(C3xC3:S3) | 324,146 |
C6.8(C3xC3:S3) = C2xHe3.4S3 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 54 | 6+ | C6.8(C3xC3:S3) | 324,147 |
C6.9(C3xC3:S3) = C3xC33:5C4 | φ: C3xC3:S3/C33 → C2 ⊆ Aut C6 | 108 | | C6.9(C3xC3:S3) | 324,157 |
C6.10(C3xC3:S3) = C9xC3:Dic3 | central extension (φ=1) | 108 | | C6.10(C3xC3:S3) | 324,97 |
C6.11(C3xC3:S3) = C3xHe3:3C4 | central extension (φ=1) | 108 | | C6.11(C3xC3:S3) | 324,99 |
C6.12(C3xC3:S3) = He3.5C12 | central extension (φ=1) | 108 | 3 | C6.12(C3xC3:S3) | 324,102 |
C6.13(C3xC3:S3) = C18xC3:S3 | central extension (φ=1) | 108 | | C6.13(C3xC3:S3) | 324,143 |
C6.14(C3xC3:S3) = C6xHe3:C2 | central extension (φ=1) | 54 | | C6.14(C3xC3:S3) | 324,145 |
C6.15(C3xC3:S3) = C2xHe3.4C6 | central extension (φ=1) | 54 | 3 | C6.15(C3xC3:S3) | 324,148 |
C6.16(C3xC3:S3) = C32xC3:Dic3 | central extension (φ=1) | 36 | | C6.16(C3xC3:S3) | 324,156 |