Copied to
clipboard

G = C3:S3xC3xC6order 324 = 22·34

Direct product of C3xC6 and C3:S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3:S3xC3xC6, C33:19D6, C34:8C22, C32:5C62, C6:(S3xC32), (C33xC6):2C2, (C32xC6):7S3, (C32xC6):8C6, C33:12(C2xC6), C32:10(S3xC6), C3:2(S3xC3xC6), (C3xC6):5(C3xS3), (C3xC6):4(C3xC6), SmallGroup(324,173)

Series: Derived Chief Lower central Upper central

C1C32 — C3:S3xC3xC6
C1C3C32C33C34C32xC3:S3 — C3:S3xC3xC6
C32 — C3:S3xC3xC6
C1C3xC6

Generators and relations for C3:S3xC3xC6
 G = < a,b,c,d,e | a3=b6=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 820 in 356 conjugacy classes, 90 normal (10 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C32, C32, C32, D6, C2xC6, C3xS3, C3:S3, C3xC6, C3xC6, C3xC6, C33, C33, S3xC6, C2xC3:S3, C62, S3xC32, C3xC3:S3, C32xC6, C32xC6, C34, S3xC3xC6, C6xC3:S3, C32xC3:S3, C33xC6, C3:S3xC3xC6
Quotients: C1, C2, C3, C22, S3, C6, C32, D6, C2xC6, C3xS3, C3:S3, C3xC6, S3xC6, C2xC3:S3, C62, S3xC32, C3xC3:S3, S3xC3xC6, C6xC3:S3, C32xC3:S3, C3:S3xC3xC6

Smallest permutation representation of C3:S3xC3xC6
On 36 points
Generators in S36
(1 19 30)(2 20 25)(3 21 26)(4 22 27)(5 23 28)(6 24 29)(7 15 35)(8 16 36)(9 17 31)(10 18 32)(11 13 33)(12 14 34)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 23 26)(2 24 27)(3 19 28)(4 20 29)(5 21 30)(6 22 25)(7 31 13)(8 32 14)(9 33 15)(10 34 16)(11 35 17)(12 36 18)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)
(1 9)(2 10)(3 11)(4 12)(5 7)(6 8)(13 21)(14 22)(15 23)(16 24)(17 19)(18 20)(25 32)(26 33)(27 34)(28 35)(29 36)(30 31)

G:=sub<Sym(36)| (1,19,30)(2,20,25)(3,21,26)(4,22,27)(5,23,28)(6,24,29)(7,15,35)(8,16,36)(9,17,31)(10,18,32)(11,13,33)(12,14,34), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,23,26)(2,24,27)(3,19,28)(4,20,29)(5,21,30)(6,22,25)(7,31,13)(8,32,14)(9,33,15)(10,34,16)(11,35,17)(12,36,18), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,21)(14,22)(15,23)(16,24)(17,19)(18,20)(25,32)(26,33)(27,34)(28,35)(29,36)(30,31)>;

G:=Group( (1,19,30)(2,20,25)(3,21,26)(4,22,27)(5,23,28)(6,24,29)(7,15,35)(8,16,36)(9,17,31)(10,18,32)(11,13,33)(12,14,34), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,23,26)(2,24,27)(3,19,28)(4,20,29)(5,21,30)(6,22,25)(7,31,13)(8,32,14)(9,33,15)(10,34,16)(11,35,17)(12,36,18), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,21)(14,22)(15,23)(16,24)(17,19)(18,20)(25,32)(26,33)(27,34)(28,35)(29,36)(30,31) );

G=PermutationGroup([[(1,19,30),(2,20,25),(3,21,26),(4,22,27),(5,23,28),(6,24,29),(7,15,35),(8,16,36),(9,17,31),(10,18,32),(11,13,33),(12,14,34)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,23,26),(2,24,27),(3,19,28),(4,20,29),(5,21,30),(6,22,25),(7,31,13),(8,32,14),(9,33,15),(10,34,16),(11,35,17),(12,36,18)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34)], [(1,9),(2,10),(3,11),(4,12),(5,7),(6,8),(13,21),(14,22),(15,23),(16,24),(17,19),(18,20),(25,32),(26,33),(27,34),(28,35),(29,36),(30,31)]])

108 conjugacy classes

class 1 2A2B2C3A···3H3I···3AR6A···6H6I···6AR6AS···6BH
order12223···33···36···66···66···6
size11991···12···21···12···29···9

108 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6S3D6C3xS3S3xC6
kernelC3:S3xC3xC6C32xC3:S3C33xC6C6xC3:S3C3xC3:S3C32xC6C32xC6C33C3xC6C32
# reps1218168443232

Matrix representation of C3:S3xC3xC6 in GL4(F7) generated by

4000
0400
0020
0002
,
6000
0600
0030
0003
,
4000
0200
0010
0001
,
1000
0100
0020
0004
,
0100
1000
0001
0010
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,2,0,0,0,0,2],[6,0,0,0,0,6,0,0,0,0,3,0,0,0,0,3],[4,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,2,0,0,0,0,4],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C3:S3xC3xC6 in GAP, Magma, Sage, TeX

C_3\rtimes S_3\times C_3\times C_6
% in TeX

G:=Group("C3:S3xC3xC6");
// GroupNames label

G:=SmallGroup(324,173);
// by ID

G=gap.SmallGroup(324,173);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,2164,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<