Extensions 1→N→G→Q→1 with N=C3×Dic14 and Q=C2

Direct product G=N×Q with N=C3×Dic14 and Q=C2
dρLabelID
C6×Dic14336C6xDic14336,174

Semidirect products G=N:Q with N=C3×Dic14 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic14)⋊1C2 = C21⋊SD16φ: C2/C1C2 ⊆ Out C3×Dic141684+(C3xDic14):1C2336,35
(C3×Dic14)⋊2C2 = S3×Dic14φ: C2/C1C2 ⊆ Out C3×Dic141684-(C3xDic14):2C2336,140
(C3×Dic14)⋊3C2 = D84⋊C2φ: C2/C1C2 ⊆ Out C3×Dic141684+(C3xDic14):3C2336,142
(C3×Dic14)⋊4C2 = C42.D4φ: C2/C1C2 ⊆ Out C3×Dic141684(C3xDic14):4C2336,33
(C3×Dic14)⋊5C2 = D12⋊D7φ: C2/C1C2 ⊆ Out C3×Dic141684(C3xDic14):5C2336,141
(C3×Dic14)⋊6C2 = D21⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic141684(C3xDic14):6C2336,143
(C3×Dic14)⋊7C2 = C3×C56⋊C2φ: C2/C1C2 ⊆ Out C3×Dic141682(C3xDic14):7C2336,60
(C3×Dic14)⋊8C2 = C3×D4.D7φ: C2/C1C2 ⊆ Out C3×Dic141684(C3xDic14):8C2336,70
(C3×Dic14)⋊9C2 = C3×D42D7φ: C2/C1C2 ⊆ Out C3×Dic141684(C3xDic14):9C2336,179
(C3×Dic14)⋊10C2 = C3×Q8×D7φ: C2/C1C2 ⊆ Out C3×Dic141684(C3xDic14):10C2336,180
(C3×Dic14)⋊11C2 = C3×C4○D28φ: trivial image1682(C3xDic14):11C2336,177

Non-split extensions G=N.Q with N=C3×Dic14 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic14).1C2 = C3⋊Dic28φ: C2/C1C2 ⊆ Out C3×Dic143364-(C3xDic14).1C2336,39
(C3×Dic14).2C2 = C21⋊Q16φ: C2/C1C2 ⊆ Out C3×Dic143364(C3xDic14).2C2336,38
(C3×Dic14).3C2 = C3×Dic28φ: C2/C1C2 ⊆ Out C3×Dic143362(C3xDic14).3C2336,62
(C3×Dic14).4C2 = C3×C7⋊Q16φ: C2/C1C2 ⊆ Out C3×Dic143364(C3xDic14).4C2336,72

׿
×
𝔽