Copied to
clipboard

G = C3×Dic14order 168 = 23·3·7

Direct product of C3 and Dic14

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3×Dic14, C213Q8, C28.5C6, C84.3C2, C12.3D7, C6.13D14, Dic7.2C6, C42.13C22, C4.(C3×D7), C73(C3×Q8), C2.3(C6×D7), C14.9(C2×C6), (C3×Dic7).2C2, SmallGroup(168,24)

Series: Derived Chief Lower central Upper central

C1C14 — C3×Dic14
C1C7C14C42C3×Dic7 — C3×Dic14
C7C14 — C3×Dic14
C1C6C12

Generators and relations for C3×Dic14
 G = < a,b,c | a3=b28=1, c2=b14, ab=ba, ac=ca, cbc-1=b-1 >

7C4
7C4
7Q8
7C12
7C12
7C3×Q8

Smallest permutation representation of C3×Dic14
Regular action on 168 points
Generators in S168
(1 112 121)(2 85 122)(3 86 123)(4 87 124)(5 88 125)(6 89 126)(7 90 127)(8 91 128)(9 92 129)(10 93 130)(11 94 131)(12 95 132)(13 96 133)(14 97 134)(15 98 135)(16 99 136)(17 100 137)(18 101 138)(19 102 139)(20 103 140)(21 104 113)(22 105 114)(23 106 115)(24 107 116)(25 108 117)(26 109 118)(27 110 119)(28 111 120)(29 156 57)(30 157 58)(31 158 59)(32 159 60)(33 160 61)(34 161 62)(35 162 63)(36 163 64)(37 164 65)(38 165 66)(39 166 67)(40 167 68)(41 168 69)(42 141 70)(43 142 71)(44 143 72)(45 144 73)(46 145 74)(47 146 75)(48 147 76)(49 148 77)(50 149 78)(51 150 79)(52 151 80)(53 152 81)(54 153 82)(55 154 83)(56 155 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 44 15 30)(2 43 16 29)(3 42 17 56)(4 41 18 55)(5 40 19 54)(6 39 20 53)(7 38 21 52)(8 37 22 51)(9 36 23 50)(10 35 24 49)(11 34 25 48)(12 33 26 47)(13 32 27 46)(14 31 28 45)(57 122 71 136)(58 121 72 135)(59 120 73 134)(60 119 74 133)(61 118 75 132)(62 117 76 131)(63 116 77 130)(64 115 78 129)(65 114 79 128)(66 113 80 127)(67 140 81 126)(68 139 82 125)(69 138 83 124)(70 137 84 123)(85 142 99 156)(86 141 100 155)(87 168 101 154)(88 167 102 153)(89 166 103 152)(90 165 104 151)(91 164 105 150)(92 163 106 149)(93 162 107 148)(94 161 108 147)(95 160 109 146)(96 159 110 145)(97 158 111 144)(98 157 112 143)

G:=sub<Sym(168)| (1,112,121)(2,85,122)(3,86,123)(4,87,124)(5,88,125)(6,89,126)(7,90,127)(8,91,128)(9,92,129)(10,93,130)(11,94,131)(12,95,132)(13,96,133)(14,97,134)(15,98,135)(16,99,136)(17,100,137)(18,101,138)(19,102,139)(20,103,140)(21,104,113)(22,105,114)(23,106,115)(24,107,116)(25,108,117)(26,109,118)(27,110,119)(28,111,120)(29,156,57)(30,157,58)(31,158,59)(32,159,60)(33,160,61)(34,161,62)(35,162,63)(36,163,64)(37,164,65)(38,165,66)(39,166,67)(40,167,68)(41,168,69)(42,141,70)(43,142,71)(44,143,72)(45,144,73)(46,145,74)(47,146,75)(48,147,76)(49,148,77)(50,149,78)(51,150,79)(52,151,80)(53,152,81)(54,153,82)(55,154,83)(56,155,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,44,15,30)(2,43,16,29)(3,42,17,56)(4,41,18,55)(5,40,19,54)(6,39,20,53)(7,38,21,52)(8,37,22,51)(9,36,23,50)(10,35,24,49)(11,34,25,48)(12,33,26,47)(13,32,27,46)(14,31,28,45)(57,122,71,136)(58,121,72,135)(59,120,73,134)(60,119,74,133)(61,118,75,132)(62,117,76,131)(63,116,77,130)(64,115,78,129)(65,114,79,128)(66,113,80,127)(67,140,81,126)(68,139,82,125)(69,138,83,124)(70,137,84,123)(85,142,99,156)(86,141,100,155)(87,168,101,154)(88,167,102,153)(89,166,103,152)(90,165,104,151)(91,164,105,150)(92,163,106,149)(93,162,107,148)(94,161,108,147)(95,160,109,146)(96,159,110,145)(97,158,111,144)(98,157,112,143)>;

G:=Group( (1,112,121)(2,85,122)(3,86,123)(4,87,124)(5,88,125)(6,89,126)(7,90,127)(8,91,128)(9,92,129)(10,93,130)(11,94,131)(12,95,132)(13,96,133)(14,97,134)(15,98,135)(16,99,136)(17,100,137)(18,101,138)(19,102,139)(20,103,140)(21,104,113)(22,105,114)(23,106,115)(24,107,116)(25,108,117)(26,109,118)(27,110,119)(28,111,120)(29,156,57)(30,157,58)(31,158,59)(32,159,60)(33,160,61)(34,161,62)(35,162,63)(36,163,64)(37,164,65)(38,165,66)(39,166,67)(40,167,68)(41,168,69)(42,141,70)(43,142,71)(44,143,72)(45,144,73)(46,145,74)(47,146,75)(48,147,76)(49,148,77)(50,149,78)(51,150,79)(52,151,80)(53,152,81)(54,153,82)(55,154,83)(56,155,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,44,15,30)(2,43,16,29)(3,42,17,56)(4,41,18,55)(5,40,19,54)(6,39,20,53)(7,38,21,52)(8,37,22,51)(9,36,23,50)(10,35,24,49)(11,34,25,48)(12,33,26,47)(13,32,27,46)(14,31,28,45)(57,122,71,136)(58,121,72,135)(59,120,73,134)(60,119,74,133)(61,118,75,132)(62,117,76,131)(63,116,77,130)(64,115,78,129)(65,114,79,128)(66,113,80,127)(67,140,81,126)(68,139,82,125)(69,138,83,124)(70,137,84,123)(85,142,99,156)(86,141,100,155)(87,168,101,154)(88,167,102,153)(89,166,103,152)(90,165,104,151)(91,164,105,150)(92,163,106,149)(93,162,107,148)(94,161,108,147)(95,160,109,146)(96,159,110,145)(97,158,111,144)(98,157,112,143) );

G=PermutationGroup([[(1,112,121),(2,85,122),(3,86,123),(4,87,124),(5,88,125),(6,89,126),(7,90,127),(8,91,128),(9,92,129),(10,93,130),(11,94,131),(12,95,132),(13,96,133),(14,97,134),(15,98,135),(16,99,136),(17,100,137),(18,101,138),(19,102,139),(20,103,140),(21,104,113),(22,105,114),(23,106,115),(24,107,116),(25,108,117),(26,109,118),(27,110,119),(28,111,120),(29,156,57),(30,157,58),(31,158,59),(32,159,60),(33,160,61),(34,161,62),(35,162,63),(36,163,64),(37,164,65),(38,165,66),(39,166,67),(40,167,68),(41,168,69),(42,141,70),(43,142,71),(44,143,72),(45,144,73),(46,145,74),(47,146,75),(48,147,76),(49,148,77),(50,149,78),(51,150,79),(52,151,80),(53,152,81),(54,153,82),(55,154,83),(56,155,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,44,15,30),(2,43,16,29),(3,42,17,56),(4,41,18,55),(5,40,19,54),(6,39,20,53),(7,38,21,52),(8,37,22,51),(9,36,23,50),(10,35,24,49),(11,34,25,48),(12,33,26,47),(13,32,27,46),(14,31,28,45),(57,122,71,136),(58,121,72,135),(59,120,73,134),(60,119,74,133),(61,118,75,132),(62,117,76,131),(63,116,77,130),(64,115,78,129),(65,114,79,128),(66,113,80,127),(67,140,81,126),(68,139,82,125),(69,138,83,124),(70,137,84,123),(85,142,99,156),(86,141,100,155),(87,168,101,154),(88,167,102,153),(89,166,103,152),(90,165,104,151),(91,164,105,150),(92,163,106,149),(93,162,107,148),(94,161,108,147),(95,160,109,146),(96,159,110,145),(97,158,111,144),(98,157,112,143)]])

C3×Dic14 is a maximal subgroup of
C42.D4  C21⋊SD16  C21⋊Q16  C3⋊Dic28  D12⋊D7  D84⋊C2  D21⋊Q8  C3×Q8×D7

51 conjugacy classes

class 1  2 3A3B4A4B4C6A6B7A7B7C12A12B12C12D12E12F14A14B14C21A···21F28A···28F42A···42F84A···84L
order12334446677712121212121214141421···2128···2842···4284···84
size1111214141122222141414142222···22···22···22···2

51 irreducible representations

dim11111122222222
type+++-++-
imageC1C2C2C3C6C6Q8D7C3×Q8D14C3×D7Dic14C6×D7C3×Dic14
kernelC3×Dic14C3×Dic7C84Dic14Dic7C28C21C12C7C6C4C3C2C1
# reps121242132366612

Matrix representation of C3×Dic14 in GL2(𝔽337) generated by

1280
0128
,
225243
94118
,
16149
200176
G:=sub<GL(2,GF(337))| [128,0,0,128],[225,94,243,118],[161,200,49,176] >;

C3×Dic14 in GAP, Magma, Sage, TeX

C_3\times {\rm Dic}_{14}
% in TeX

G:=Group("C3xDic14");
// GroupNames label

G:=SmallGroup(168,24);
// by ID

G=gap.SmallGroup(168,24);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-7,60,141,66,3604]);
// Polycyclic

G:=Group<a,b,c|a^3=b^28=1,c^2=b^14,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C3×Dic14 in TeX

׿
×
𝔽