Extensions 1→N→G→Q→1 with N=C8 and Q=C2×C7⋊C3

Direct product G=N×Q with N=C8 and Q=C2×C7⋊C3
dρLabelID
C2×C8×C7⋊C3112C2xC8xC7:C3336,51

Semidirect products G=N:Q with N=C8 and Q=C2×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C81(C2×C7⋊C3) = D8×C7⋊C3φ: C2×C7⋊C3/C7⋊C3C2 ⊆ Aut C8566C8:1(C2xC7:C3)336,53
C82(C2×C7⋊C3) = SD16×C7⋊C3φ: C2×C7⋊C3/C7⋊C3C2 ⊆ Aut C8566C8:2(C2xC7:C3)336,54
C83(C2×C7⋊C3) = M4(2)×C7⋊C3φ: C2×C7⋊C3/C7⋊C3C2 ⊆ Aut C8566C8:3(C2xC7:C3)336,52

Non-split extensions G=N.Q with N=C8 and Q=C2×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C8.(C2×C7⋊C3) = Q16×C7⋊C3φ: C2×C7⋊C3/C7⋊C3C2 ⊆ Aut C81126C8.(C2xC7:C3)336,55
C8.2(C2×C7⋊C3) = C16×C7⋊C3central extension (φ=1)1123C8.2(C2xC7:C3)336,2

׿
×
𝔽