Copied to
clipboard

G = Q16×C7⋊C3order 336 = 24·3·7

Direct product of Q16 and C7⋊C3

direct product, metacyclic, supersoluble, monomial

Aliases: Q16×C7⋊C3, C56.3C6, (C7×Q16)⋊C3, C73(C3×Q16), (C7×Q8).4C6, C28.19(C2×C6), C14.16(C3×D4), C8.(C2×C7⋊C3), C2.5(D4×C7⋊C3), (C8×C7⋊C3).3C2, Q8.2(C2×C7⋊C3), (Q8×C7⋊C3).2C2, (C2×C7⋊C3).16D4, C4.3(C22×C7⋊C3), (C4×C7⋊C3).19C22, SmallGroup(336,55)

Series: Derived Chief Lower central Upper central

C1C28 — Q16×C7⋊C3
C1C7C14C28C4×C7⋊C3Q8×C7⋊C3 — Q16×C7⋊C3
C7C14C28 — Q16×C7⋊C3
C1C2C4Q16

Generators and relations for Q16×C7⋊C3
 G = < a,b,c,d | a8=c7=d3=1, b2=a4, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C3
2C4
2C4
7C6
7C12
14C12
14C12
2C28
2C28
7C3×Q8
7C3×Q8
7C24
2C4×C7⋊C3
2C4×C7⋊C3
7C3×Q16

Smallest permutation representation of Q16×C7⋊C3
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 25 5 29)(2 32 6 28)(3 31 7 27)(4 30 8 26)(9 48 13 44)(10 47 14 43)(11 46 15 42)(12 45 16 41)(17 61 21 57)(18 60 22 64)(19 59 23 63)(20 58 24 62)(33 83 37 87)(34 82 38 86)(35 81 39 85)(36 88 40 84)(49 110 53 106)(50 109 54 105)(51 108 55 112)(52 107 56 111)(65 94 69 90)(66 93 70 89)(67 92 71 96)(68 91 72 95)(73 99 77 103)(74 98 78 102)(75 97 79 101)(76 104 80 100)
(1 36 61 107 89 14 102)(2 37 62 108 90 15 103)(3 38 63 109 91 16 104)(4 39 64 110 92 9 97)(5 40 57 111 93 10 98)(6 33 58 112 94 11 99)(7 34 59 105 95 12 100)(8 35 60 106 96 13 101)(17 52 70 47 78 29 84)(18 53 71 48 79 30 85)(19 54 72 41 80 31 86)(20 55 65 42 73 32 87)(21 56 66 43 74 25 88)(22 49 67 44 75 26 81)(23 50 68 45 76 27 82)(24 51 69 46 77 28 83)
(9 110 97)(10 111 98)(11 112 99)(12 105 100)(13 106 101)(14 107 102)(15 108 103)(16 109 104)(17 70 84)(18 71 85)(19 72 86)(20 65 87)(21 66 88)(22 67 81)(23 68 82)(24 69 83)(33 58 94)(34 59 95)(35 60 96)(36 61 89)(37 62 90)(38 63 91)(39 64 92)(40 57 93)(41 54 80)(42 55 73)(43 56 74)(44 49 75)(45 50 76)(46 51 77)(47 52 78)(48 53 79)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,25,5,29)(2,32,6,28)(3,31,7,27)(4,30,8,26)(9,48,13,44)(10,47,14,43)(11,46,15,42)(12,45,16,41)(17,61,21,57)(18,60,22,64)(19,59,23,63)(20,58,24,62)(33,83,37,87)(34,82,38,86)(35,81,39,85)(36,88,40,84)(49,110,53,106)(50,109,54,105)(51,108,55,112)(52,107,56,111)(65,94,69,90)(66,93,70,89)(67,92,71,96)(68,91,72,95)(73,99,77,103)(74,98,78,102)(75,97,79,101)(76,104,80,100), (1,36,61,107,89,14,102)(2,37,62,108,90,15,103)(3,38,63,109,91,16,104)(4,39,64,110,92,9,97)(5,40,57,111,93,10,98)(6,33,58,112,94,11,99)(7,34,59,105,95,12,100)(8,35,60,106,96,13,101)(17,52,70,47,78,29,84)(18,53,71,48,79,30,85)(19,54,72,41,80,31,86)(20,55,65,42,73,32,87)(21,56,66,43,74,25,88)(22,49,67,44,75,26,81)(23,50,68,45,76,27,82)(24,51,69,46,77,28,83), (9,110,97)(10,111,98)(11,112,99)(12,105,100)(13,106,101)(14,107,102)(15,108,103)(16,109,104)(17,70,84)(18,71,85)(19,72,86)(20,65,87)(21,66,88)(22,67,81)(23,68,82)(24,69,83)(33,58,94)(34,59,95)(35,60,96)(36,61,89)(37,62,90)(38,63,91)(39,64,92)(40,57,93)(41,54,80)(42,55,73)(43,56,74)(44,49,75)(45,50,76)(46,51,77)(47,52,78)(48,53,79)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,25,5,29)(2,32,6,28)(3,31,7,27)(4,30,8,26)(9,48,13,44)(10,47,14,43)(11,46,15,42)(12,45,16,41)(17,61,21,57)(18,60,22,64)(19,59,23,63)(20,58,24,62)(33,83,37,87)(34,82,38,86)(35,81,39,85)(36,88,40,84)(49,110,53,106)(50,109,54,105)(51,108,55,112)(52,107,56,111)(65,94,69,90)(66,93,70,89)(67,92,71,96)(68,91,72,95)(73,99,77,103)(74,98,78,102)(75,97,79,101)(76,104,80,100), (1,36,61,107,89,14,102)(2,37,62,108,90,15,103)(3,38,63,109,91,16,104)(4,39,64,110,92,9,97)(5,40,57,111,93,10,98)(6,33,58,112,94,11,99)(7,34,59,105,95,12,100)(8,35,60,106,96,13,101)(17,52,70,47,78,29,84)(18,53,71,48,79,30,85)(19,54,72,41,80,31,86)(20,55,65,42,73,32,87)(21,56,66,43,74,25,88)(22,49,67,44,75,26,81)(23,50,68,45,76,27,82)(24,51,69,46,77,28,83), (9,110,97)(10,111,98)(11,112,99)(12,105,100)(13,106,101)(14,107,102)(15,108,103)(16,109,104)(17,70,84)(18,71,85)(19,72,86)(20,65,87)(21,66,88)(22,67,81)(23,68,82)(24,69,83)(33,58,94)(34,59,95)(35,60,96)(36,61,89)(37,62,90)(38,63,91)(39,64,92)(40,57,93)(41,54,80)(42,55,73)(43,56,74)(44,49,75)(45,50,76)(46,51,77)(47,52,78)(48,53,79) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,25,5,29),(2,32,6,28),(3,31,7,27),(4,30,8,26),(9,48,13,44),(10,47,14,43),(11,46,15,42),(12,45,16,41),(17,61,21,57),(18,60,22,64),(19,59,23,63),(20,58,24,62),(33,83,37,87),(34,82,38,86),(35,81,39,85),(36,88,40,84),(49,110,53,106),(50,109,54,105),(51,108,55,112),(52,107,56,111),(65,94,69,90),(66,93,70,89),(67,92,71,96),(68,91,72,95),(73,99,77,103),(74,98,78,102),(75,97,79,101),(76,104,80,100)], [(1,36,61,107,89,14,102),(2,37,62,108,90,15,103),(3,38,63,109,91,16,104),(4,39,64,110,92,9,97),(5,40,57,111,93,10,98),(6,33,58,112,94,11,99),(7,34,59,105,95,12,100),(8,35,60,106,96,13,101),(17,52,70,47,78,29,84),(18,53,71,48,79,30,85),(19,54,72,41,80,31,86),(20,55,65,42,73,32,87),(21,56,66,43,74,25,88),(22,49,67,44,75,26,81),(23,50,68,45,76,27,82),(24,51,69,46,77,28,83)], [(9,110,97),(10,111,98),(11,112,99),(12,105,100),(13,106,101),(14,107,102),(15,108,103),(16,109,104),(17,70,84),(18,71,85),(19,72,86),(20,65,87),(21,66,88),(22,67,81),(23,68,82),(24,69,83),(33,58,94),(34,59,95),(35,60,96),(36,61,89),(37,62,90),(38,63,91),(39,64,92),(40,57,93),(41,54,80),(42,55,73),(43,56,74),(44,49,75),(45,50,76),(46,51,77),(47,52,78),(48,53,79)]])

35 conjugacy classes

class 1  2 3A3B4A4B4C6A6B7A7B8A8B12A12B12C12D12E12F14A14B24A24B24C24D28A28B28C28D28E28F56A56B56C56D
order123344466778812121212121214142424242428282828282856565656
size1177244773322141428282828331414141466121212126666

35 irreducible representations

dim111111222233366
type++++-
imageC1C2C2C3C6C6D4Q16C3×D4C3×Q16C7⋊C3C2×C7⋊C3C2×C7⋊C3D4×C7⋊C3Q16×C7⋊C3
kernelQ16×C7⋊C3C8×C7⋊C3Q8×C7⋊C3C7×Q16C56C7×Q8C2×C7⋊C3C7⋊C3C14C7Q16C8Q8C2C1
# reps112224122422424

Matrix representation of Q16×C7⋊C3 in GL5(𝔽337)

0311000
13311000
0033600
0003360
0000336
,
333255000
2924000
00100
00010
00001
,
10000
01000
003362121
0002121
003362131
,
2080000
0208000
002131125
00100
0011124

G:=sub<GL(5,GF(337))| [0,13,0,0,0,311,311,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,336],[333,292,0,0,0,255,4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,336,0,336,0,0,212,212,213,0,0,1,1,1],[208,0,0,0,0,0,208,0,0,0,0,0,213,1,1,0,0,1,0,1,0,0,125,0,124] >;

Q16×C7⋊C3 in GAP, Magma, Sage, TeX

Q_{16}\times C_7\rtimes C_3
% in TeX

G:=Group("Q16xC7:C3");
// GroupNames label

G:=SmallGroup(336,55);
// by ID

G=gap.SmallGroup(336,55);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,144,169,151,867,441,69,881]);
// Polycyclic

G:=Group<a,b,c,d|a^8=c^7=d^3=1,b^2=a^4,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of Q16×C7⋊C3 in TeX

׿
×
𝔽