Extensions 1→N→G→Q→1 with N=D84 and Q=C2

Direct product G=N×Q with N=D84 and Q=C2
dρLabelID
C2×D84168C2xD84336,196

Semidirect products G=N:Q with N=D84 and Q=C2
extensionφ:Q→Out NdρLabelID
D841C2 = D168φ: C2/C1C2 ⊆ Out D841682+D84:1C2336,93
D842C2 = D4⋊D21φ: C2/C1C2 ⊆ Out D841684+D84:2C2336,101
D843C2 = D4×D21φ: C2/C1C2 ⊆ Out D84844+D84:3C2336,198
D844C2 = Q83D21φ: C2/C1C2 ⊆ Out D841684+D84:4C2336,201
D845C2 = C3⋊D56φ: C2/C1C2 ⊆ Out D841684+D84:5C2336,30
D846C2 = D84⋊C2φ: C2/C1C2 ⊆ Out D841684+D84:6C2336,142
D847C2 = S3×D28φ: C2/C1C2 ⊆ Out D84844+D84:7C2336,149
D848C2 = C7⋊D24φ: C2/C1C2 ⊆ Out D841684+D84:8C2336,31
D849C2 = D14.D6φ: C2/C1C2 ⊆ Out D841684+D84:9C2336,146
D8410C2 = D7×D12φ: C2/C1C2 ⊆ Out D84844+D84:10C2336,148
D8411C2 = D8411C2φ: trivial image1682D84:11C2336,197

Non-split extensions G=N.Q with N=D84 and Q=C2
extensionφ:Q→Out NdρLabelID
D84.1C2 = C8⋊D21φ: C2/C1C2 ⊆ Out D841682D84.1C2336,92
D84.2C2 = Q82D21φ: C2/C1C2 ⊆ Out D841684+D84.2C2336,103
D84.3C2 = C21⋊SD16φ: C2/C1C2 ⊆ Out D841684+D84.3C2336,35
D84.4C2 = Dic6⋊D7φ: C2/C1C2 ⊆ Out D841684+D84.4C2336,37

׿
×
𝔽