Extensions 1→N→G→Q→1 with N=C28 and Q=C12

Direct product G=N×Q with N=C28 and Q=C12
dρLabelID
C4×C84336C4xC84336,106

Semidirect products G=N:Q with N=C28 and Q=C12
extensionφ:Q→Aut NdρLabelID
C281C12 = C28⋊C12φ: C12/C2C6 ⊆ Aut C28112C28:1C12336,16
C282C12 = C4×C7⋊C12φ: C12/C2C6 ⊆ Aut C28112C28:2C12336,14
C283C12 = C4⋊C4×C7⋊C3φ: C12/C2C6 ⊆ Aut C28112C28:3C12336,50
C284C12 = C42×C7⋊C3φ: C12/C4C3 ⊆ Aut C28112C28:4C12336,48
C285C12 = C3×C4⋊Dic7φ: C12/C6C2 ⊆ Aut C28336C28:5C12336,67
C286C12 = C12×Dic7φ: C12/C6C2 ⊆ Aut C28336C28:6C12336,65
C287C12 = C4⋊C4×C21φ: C12/C6C2 ⊆ Aut C28336C28:7C12336,108

Non-split extensions G=N.Q with N=C28 and Q=C12
extensionφ:Q→Aut NdρLabelID
C28.1C12 = C28.C12φ: C12/C2C6 ⊆ Aut C28566C28.1C12336,13
C28.2C12 = C7⋊C48φ: C12/C2C6 ⊆ Aut C281126C28.2C12336,1
C28.3C12 = C2×C7⋊C24φ: C12/C2C6 ⊆ Aut C28112C28.3C12336,12
C28.4C12 = M4(2)×C7⋊C3φ: C12/C2C6 ⊆ Aut C28566C28.4C12336,52
C28.5C12 = C16×C7⋊C3φ: C12/C4C3 ⊆ Aut C281123C28.5C12336,2
C28.6C12 = C2×C8×C7⋊C3φ: C12/C4C3 ⊆ Aut C28112C28.6C12336,51
C28.7C12 = C3×C4.Dic7φ: C12/C6C2 ⊆ Aut C281682C28.7C12336,64
C28.8C12 = C3×C7⋊C16φ: C12/C6C2 ⊆ Aut C283362C28.8C12336,4
C28.9C12 = C6×C7⋊C8φ: C12/C6C2 ⊆ Aut C28336C28.9C12336,63
C28.10C12 = M4(2)×C21φ: C12/C6C2 ⊆ Aut C281682C28.10C12336,110

׿
×
𝔽