Extensions 1→N→G→Q→1 with N=C3 and Q=S3×C3×C6

Direct product G=N×Q with N=C3 and Q=S3×C3×C6
dρLabelID
S3×C32×C6108S3xC3^2xC6324,172

Semidirect products G=N:Q with N=C3 and Q=S3×C3×C6
extensionφ:Q→Aut NdρLabelID
C31(S3×C3×C6) = S32×C32φ: S3×C3×C6/S3×C32C2 ⊆ Aut C336C3:1(S3xC3xC6)324,165
C32(S3×C3×C6) = C3⋊S3×C3×C6φ: S3×C3×C6/C32×C6C2 ⊆ Aut C336C3:2(S3xC3xC6)324,173

Non-split extensions G=N.Q with N=C3 and Q=S3×C3×C6
extensionφ:Q→Aut NdρLabelID
C3.1(S3×C3×C6) = D9×C3×C6φ: S3×C3×C6/C32×C6C2 ⊆ Aut C3108C3.1(S3xC3xC6)324,136
C3.2(S3×C3×C6) = C6×C32⋊C6φ: S3×C3×C6/C32×C6C2 ⊆ Aut C3366C3.2(S3xC3xC6)324,138
C3.3(S3×C3×C6) = C6×C9⋊C6φ: S3×C3×C6/C32×C6C2 ⊆ Aut C3366C3.3(S3xC3xC6)324,140
C3.4(S3×C3×C6) = S3×C3×C18central extension (φ=1)108C3.4(S3xC3xC6)324,137
C3.5(S3×C3×C6) = C2×S3×He3central stem extension (φ=1)366C3.5(S3xC3xC6)324,139
C3.6(S3×C3×C6) = C2×S3×3- 1+2central stem extension (φ=1)366C3.6(S3xC3xC6)324,141

׿
×
𝔽