Copied to
clipboard

G = D9xC3xC6order 324 = 22·34

Direct product of C3xC6 and D9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D9xC3xC6, C9:3C62, C33.11D6, C18:3(C3xC6), (C3xC18):14C6, (C32xC18):3C2, C6.4(S3xC32), (C32xC9):8C22, (C32xC6).18S3, C32.17(S3xC6), C3.1(S3xC3xC6), (C3xC9):16(C2xC6), (C3xC6).37(C3xS3), SmallGroup(324,136)

Series: Derived Chief Lower central Upper central

C1C9 — D9xC3xC6
C1C3C9C3xC9C32xC9C32xD9 — D9xC3xC6
C9 — D9xC3xC6
C1C3xC6

Generators and relations for D9xC3xC6
 G = < a,b,c,d | a3=b6=c9=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 334 in 122 conjugacy classes, 54 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C22, S3, C6, C6, C6, C9, C9, C32, C32, C32, D6, C2xC6, D9, C18, C18, C3xS3, C3xC6, C3xC6, C3xC6, C3xC9, C3xC9, C33, D18, S3xC6, C62, C3xD9, C3xC18, C3xC18, S3xC32, C32xC6, C32xC9, C6xD9, S3xC3xC6, C32xD9, C32xC18, D9xC3xC6
Quotients: C1, C2, C3, C22, S3, C6, C32, D6, C2xC6, D9, C3xS3, C3xC6, D18, S3xC6, C62, C3xD9, S3xC32, C6xD9, S3xC3xC6, C32xD9, D9xC3xC6

Smallest permutation representation of D9xC3xC6
On 108 points
Generators in S108
(1 17 20)(2 18 21)(3 10 22)(4 11 23)(5 12 24)(6 13 25)(7 14 26)(8 15 27)(9 16 19)(28 40 52)(29 41 53)(30 42 54)(31 43 46)(32 44 47)(33 45 48)(34 37 49)(35 38 50)(36 39 51)(55 70 76)(56 71 77)(57 72 78)(58 64 79)(59 65 80)(60 66 81)(61 67 73)(62 68 74)(63 69 75)(82 97 103)(83 98 104)(84 99 105)(85 91 106)(86 92 107)(87 93 108)(88 94 100)(89 95 101)(90 96 102)
(1 41 23 32 14 50)(2 42 24 33 15 51)(3 43 25 34 16 52)(4 44 26 35 17 53)(5 45 27 36 18 54)(6 37 19 28 10 46)(7 38 20 29 11 47)(8 39 21 30 12 48)(9 40 22 31 13 49)(55 91 73 82 64 100)(56 92 74 83 65 101)(57 93 75 84 66 102)(58 94 76 85 67 103)(59 95 77 86 68 104)(60 96 78 87 69 105)(61 97 79 88 70 106)(62 98 80 89 71 107)(63 99 81 90 72 108)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)
(1 57)(2 56)(3 55)(4 63)(5 62)(6 61)(7 60)(8 59)(9 58)(10 70)(11 69)(12 68)(13 67)(14 66)(15 65)(16 64)(17 72)(18 71)(19 79)(20 78)(21 77)(22 76)(23 75)(24 74)(25 73)(26 81)(27 80)(28 88)(29 87)(30 86)(31 85)(32 84)(33 83)(34 82)(35 90)(36 89)(37 97)(38 96)(39 95)(40 94)(41 93)(42 92)(43 91)(44 99)(45 98)(46 106)(47 105)(48 104)(49 103)(50 102)(51 101)(52 100)(53 108)(54 107)

G:=sub<Sym(108)| (1,17,20)(2,18,21)(3,10,22)(4,11,23)(5,12,24)(6,13,25)(7,14,26)(8,15,27)(9,16,19)(28,40,52)(29,41,53)(30,42,54)(31,43,46)(32,44,47)(33,45,48)(34,37,49)(35,38,50)(36,39,51)(55,70,76)(56,71,77)(57,72,78)(58,64,79)(59,65,80)(60,66,81)(61,67,73)(62,68,74)(63,69,75)(82,97,103)(83,98,104)(84,99,105)(85,91,106)(86,92,107)(87,93,108)(88,94,100)(89,95,101)(90,96,102), (1,41,23,32,14,50)(2,42,24,33,15,51)(3,43,25,34,16,52)(4,44,26,35,17,53)(5,45,27,36,18,54)(6,37,19,28,10,46)(7,38,20,29,11,47)(8,39,21,30,12,48)(9,40,22,31,13,49)(55,91,73,82,64,100)(56,92,74,83,65,101)(57,93,75,84,66,102)(58,94,76,85,67,103)(59,95,77,86,68,104)(60,96,78,87,69,105)(61,97,79,88,70,106)(62,98,80,89,71,107)(63,99,81,90,72,108), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (1,57)(2,56)(3,55)(4,63)(5,62)(6,61)(7,60)(8,59)(9,58)(10,70)(11,69)(12,68)(13,67)(14,66)(15,65)(16,64)(17,72)(18,71)(19,79)(20,78)(21,77)(22,76)(23,75)(24,74)(25,73)(26,81)(27,80)(28,88)(29,87)(30,86)(31,85)(32,84)(33,83)(34,82)(35,90)(36,89)(37,97)(38,96)(39,95)(40,94)(41,93)(42,92)(43,91)(44,99)(45,98)(46,106)(47,105)(48,104)(49,103)(50,102)(51,101)(52,100)(53,108)(54,107)>;

G:=Group( (1,17,20)(2,18,21)(3,10,22)(4,11,23)(5,12,24)(6,13,25)(7,14,26)(8,15,27)(9,16,19)(28,40,52)(29,41,53)(30,42,54)(31,43,46)(32,44,47)(33,45,48)(34,37,49)(35,38,50)(36,39,51)(55,70,76)(56,71,77)(57,72,78)(58,64,79)(59,65,80)(60,66,81)(61,67,73)(62,68,74)(63,69,75)(82,97,103)(83,98,104)(84,99,105)(85,91,106)(86,92,107)(87,93,108)(88,94,100)(89,95,101)(90,96,102), (1,41,23,32,14,50)(2,42,24,33,15,51)(3,43,25,34,16,52)(4,44,26,35,17,53)(5,45,27,36,18,54)(6,37,19,28,10,46)(7,38,20,29,11,47)(8,39,21,30,12,48)(9,40,22,31,13,49)(55,91,73,82,64,100)(56,92,74,83,65,101)(57,93,75,84,66,102)(58,94,76,85,67,103)(59,95,77,86,68,104)(60,96,78,87,69,105)(61,97,79,88,70,106)(62,98,80,89,71,107)(63,99,81,90,72,108), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108), (1,57)(2,56)(3,55)(4,63)(5,62)(6,61)(7,60)(8,59)(9,58)(10,70)(11,69)(12,68)(13,67)(14,66)(15,65)(16,64)(17,72)(18,71)(19,79)(20,78)(21,77)(22,76)(23,75)(24,74)(25,73)(26,81)(27,80)(28,88)(29,87)(30,86)(31,85)(32,84)(33,83)(34,82)(35,90)(36,89)(37,97)(38,96)(39,95)(40,94)(41,93)(42,92)(43,91)(44,99)(45,98)(46,106)(47,105)(48,104)(49,103)(50,102)(51,101)(52,100)(53,108)(54,107) );

G=PermutationGroup([[(1,17,20),(2,18,21),(3,10,22),(4,11,23),(5,12,24),(6,13,25),(7,14,26),(8,15,27),(9,16,19),(28,40,52),(29,41,53),(30,42,54),(31,43,46),(32,44,47),(33,45,48),(34,37,49),(35,38,50),(36,39,51),(55,70,76),(56,71,77),(57,72,78),(58,64,79),(59,65,80),(60,66,81),(61,67,73),(62,68,74),(63,69,75),(82,97,103),(83,98,104),(84,99,105),(85,91,106),(86,92,107),(87,93,108),(88,94,100),(89,95,101),(90,96,102)], [(1,41,23,32,14,50),(2,42,24,33,15,51),(3,43,25,34,16,52),(4,44,26,35,17,53),(5,45,27,36,18,54),(6,37,19,28,10,46),(7,38,20,29,11,47),(8,39,21,30,12,48),(9,40,22,31,13,49),(55,91,73,82,64,100),(56,92,74,83,65,101),(57,93,75,84,66,102),(58,94,76,85,67,103),(59,95,77,86,68,104),(60,96,78,87,69,105),(61,97,79,88,70,106),(62,98,80,89,71,107),(63,99,81,90,72,108)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)], [(1,57),(2,56),(3,55),(4,63),(5,62),(6,61),(7,60),(8,59),(9,58),(10,70),(11,69),(12,68),(13,67),(14,66),(15,65),(16,64),(17,72),(18,71),(19,79),(20,78),(21,77),(22,76),(23,75),(24,74),(25,73),(26,81),(27,80),(28,88),(29,87),(30,86),(31,85),(32,84),(33,83),(34,82),(35,90),(36,89),(37,97),(38,96),(39,95),(40,94),(41,93),(42,92),(43,91),(44,99),(45,98),(46,106),(47,105),(48,104),(49,103),(50,102),(51,101),(52,100),(53,108),(54,107)]])

108 conjugacy classes

class 1 2A2B2C3A···3H3I···3Q6A···6H6I···6Q6R···6AG9A···9AA18A···18AA
order12223···33···36···66···66···69···918···18
size11991···12···21···12···29···92···22···2

108 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C3C6C6S3D6D9C3xS3D18S3xC6C3xD9C6xD9
kernelD9xC3xC6C32xD9C32xC18C6xD9C3xD9C3xC18C32xC6C33C3xC6C3xC6C32C32C6C3
# reps12181681138382424

Matrix representation of D9xC3xC6 in GL3(F19) generated by

1100
010
001
,
700
0120
0012
,
100
01716
009
,
100
023
01817
G:=sub<GL(3,GF(19))| [11,0,0,0,1,0,0,0,1],[7,0,0,0,12,0,0,0,12],[1,0,0,0,17,0,0,16,9],[1,0,0,0,2,18,0,3,17] >;

D9xC3xC6 in GAP, Magma, Sage, TeX

D_9\times C_3\times C_6
% in TeX

G:=Group("D9xC3xC6");
// GroupNames label

G:=SmallGroup(324,136);
// by ID

G=gap.SmallGroup(324,136);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,5404,208,7781]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^6=c^9=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<