Extensions 1→N→G→Q→1 with N=C6×3- 1+2 and Q=C2

Direct product G=N×Q with N=C6×3- 1+2 and Q=C2
dρLabelID
C2×C6×3- 1+2108C2xC6xES-(3,1)324,153

Semidirect products G=N:Q with N=C6×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×3- 1+2)⋊1C2 = C6×C9⋊C6φ: C2/C1C2 ⊆ Out C6×3- 1+2366(C6xES-(3,1)):1C2324,140
(C6×3- 1+2)⋊2C2 = C2×C33.S3φ: C2/C1C2 ⊆ Out C6×3- 1+254(C6xES-(3,1)):2C2324,146
(C6×3- 1+2)⋊3C2 = C2×S3×3- 1+2φ: C2/C1C2 ⊆ Out C6×3- 1+2366(C6xES-(3,1)):3C2324,141

Non-split extensions G=N.Q with N=C6×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×3- 1+2).1C2 = C3×C9⋊C12φ: C2/C1C2 ⊆ Out C6×3- 1+2366(C6xES-(3,1)).1C2324,94
(C6×3- 1+2).2C2 = C33.Dic3φ: C2/C1C2 ⊆ Out C6×3- 1+2108(C6xES-(3,1)).2C2324,100
(C6×3- 1+2).3C2 = Dic3×3- 1+2φ: C2/C1C2 ⊆ Out C6×3- 1+2366(C6xES-(3,1)).3C2324,95
(C6×3- 1+2).4C2 = C12×3- 1+2φ: trivial image108(C6xES-(3,1)).4C2324,107

׿
×
𝔽